Cloud Firestore scales horizontally by allocated key ranges to machines. As load increases beyond a certain threshold on a single machine, it will split the range being served by it and assign it to 2 machines.
Let's say you just starting writing to Cloud Firestore, which means a single server is currently handling the entire range.
When you are writing new documents with random Ids, when we split the range into 2, each machine will end up with roughly the same load. As load increases, we continue to split into more machines, with each one getting roughly the same load. This scales well.
When you are writing new documents with sequential Ids, if you exceed the write rate a single machine can handle, the system will try to split the range into 2. Unfortunately, one half will get no load, and the other half the full load! This doesn't scale well as you can never get more than a single machine to handle your write load.
In the case where a single machine is running more load than it can optimally handle, we call this "hot spotting". Sequential Ids mean we cannot scale to handle more load. Incidentally, this same concept applies to index entries too, which is why we warn sequential index values such as timestamps of now
as well.
So, how much is too much load? We generally say 500 writes/second is what a single machine will handle, although this will naturally vary depending on a lot of factors, such as how big a document you are writing, number of transactions, etc.
With this in mind, you can see that smaller more consistent workloads aren't a problem, but if you want something that scales based on traffic, sequential document ids or index values will naturally limit you to what a single machine in the database can keep up with.