Here's the how cart pendulum looks like
Imagine you have a 4 differantial equations which represents the motion of a dynamic system (pendulum on a cart) and you solved these equations using scipy.integrate.odeint for 10 seconds with interval of 0.01 seconds.
Finally you get the solution matrix with size (1000,4). For each diff eqs you get 1000 data points. Everything is ok so far. For example, If I plot one of the motion I can get beautiful graphics.(Below image shows the motion of the pendulum rod(oscillating))
Here's Graph of theta angle
But, instead of boring graphics and I want to make an animation that shows the motion of the cart as Steve Brunton did it as below link with using Matlab. Here's link of the cart-pend video!
====================================================================
To animate the figures I actually tried to do what Steve Brunton did in Matlab, with Python. But the result is just a frozen figure instead of moving one. Actually If I run this script from Spyder IDE, I get 1000 figures in the IPython console.(Each figure represents a snapshot of the system's instantaneous motion which is good. But I want just one figure with 1000 sequantial frames on it.)
Here's the snap of frozen cart-pend
I've written two python scripts. One for only plotting the other is for solving the diff eqs and feed the results to the other one.
~~~~~~~~~~~~~~~~~~~~~~~~~
This code is for plotting the animated figures.
from math import sqrt, sin, cos
import matplotlib.pyplot as plt
from matplotlib import animation
def draw_cart(states, m, M, L):
x = states[0] # Position of the center of the cart
theta = states[3] # Angle of the pendulum rod
#Dimensions
W = 1*sqrt(M/5) # Cart width
H = .5*sqrt(M/5) # Cart Height
wr = .2 # Wheel radius
mr = .3*sqrt(m) # Mass Radius
#Positions
y = wr/2+ H/2 # Cart Vertical Position
w1x = x-.9*W/2 # Left Wheel x coordinate
w1y = 0 # Left wheel y coordinate
w2x = x+(.9*W/2) # Right Wheel x coordinate
w2y = 0 # Right Wheel y coordinate
# Pendulum Mass x-y coordinates
px = x+(L*sin(theta))
py = y-(L*cos(theta))
#Identfying Figure
plt.figure()
plt.axes(xlim=(-5, 5), ylim=(-2, 2.5))
# Plotting the base line
line = plt.Line2D((-10, 10), (0, 0), color='k', linewidth=2)
plt.gca().add_line(line)
plt.hold(True)
# Shapes
rectangle1 = plt.Rectangle((x-(W/2), (y-H/2)), W, H, fill=True, color='b') # Cart
rectangle2= plt.Rectangle((px-(mr/2), py-(mr/2)), mr, mr, fill=True, color='r') # Pendulum mass
circle2 = plt.Circle((w1x, w1y), wr/2, fill=True, color='g') #Left whell
circle3 = plt.Circle((w2x, w2y), wr/2, fill=True, color='g') #Right whell
plt.plot((x, px), (y, py), 'k', lw=2) #Pendulum rod
#Adding shapes to the figure
plt.gca().add_patch(rectangle1)
plt.gca().add_patch(rectangle2)
plt.gca().add_patch(circle2)
plt.gca().add_patch(circle3)
# Showing the figure
plt.show()
plt.hold(False)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This is the other code for solving the diff eqs and feeding the solution to the above code.
from math import pi, sin, cos
import numpy as np
from scipy.integrate import odeint
import draw_cart_pend_rt
import matplotlib.pyplot as plt
# System Parameters
m = 1
M = 5
L = 2
g = -10
d = 1
u = 0
def cart_pend_dynamics(states, tspan):
Sy = sin(states[2])
Cy = cos(states[2])
D = m*L*L*(M+(m*(1-(Cy**2))))
state_derivatives = np.zeros_like(states)
state_derivatives[0] = states[1]
state_derivatives[1] = ((1/D)*(((-m**2)*(L**2)*g*Cy*Sy)+(m*(L**2)*(m*L*(states[3]**2)*Sy-d*(states[1])))))+(m*L*L*(1/D)*u)
state_derivatives[2] = states[3]
state_derivatives[3] = ((1/D)*((m+M)*m*g*L*Sy-m*L*Cy*(m*L*(states[3])**2*Sy-d*states[1])))-(m*L*Cy*(1/D)*u)+(0.01*1)
return state_derivatives
def solution_of_cartpend(dt):
# Initial conditions to solve diff eqs
states = np.array([0.0, 0.0, pi, 0.5]) # Left to right, cart; position-velocity, pend mass; angle-angular velocity
tspan = np.arange(0, 10, dt)
state_sol = odeint(cart_pend_dynamics, states, tspan)
return state_sol
# Time Interval
dt = 0.01
solution = solution_of_cartpend(dt)
x_den, y_den = solution.shape
# Validating the solution
plt.axes(xlim=(0,10), ylim=(-10,10))
t = np.arange(0, 10, dt)
plt.gca().plot(t, (solution[:, 2]), 'b', label='theta1')
# Animating the figures
for i in range(x_den):
draw_cart_pend_rt.draw_cart(solution[i,:], m, M, L)