> dput(zed)
structure(list(col1 = c(0, 0.236258076229343, 0.43840483531742,
0, NaN, 0.198838380845137, 0.0754815882584196, 0.10176020461209,
0.045933014354067, 0.256237616143739, 0.0880658828009711, 0.117285153415946,
0.127902400629673, 0, 0.117682083253069, 0.114542851298834, 0.0584035686594367,
0.123456790123457, 0.196817420435511, 0.0369541251378046), col2 = c(0.121951219512195,
0.17979731938542, 0.305944055944056, 0, NaN, 0.239463601532567,
0.0625521267723103, 0.161729656111679, 0.0612745098039216, 0.22002200220022,
0.135608048993876, NaN, 0, 0, 0.0934420659191301, 0.140091696383087,
0.141872719902716, 0, 0.176720075400566, 0.253924284395199),
col3 = c(0.227540305157712, 0.264931804641559, 0.190018713264226,
0.564015792442188, NaN, 0.116857208286359, 0.136034761917893,
0.137370134394451, 0.227357158778513, 0.215714919326088,
0.240671647524362, 0.107512520868114, 0.0681162324911809,
0.195274360476469, NaN, 0.208033156719459, 0.199848016844409,
0.140383517621937, 0.202430694674985, 0.0927417625979096)), row.names = c(NA,
-20L), class = c("tbl_df", "tbl", "data.frame"))
> zed
# A tibble: 20 x 3
col1 col2 col3
<dbl> <dbl> <dbl>
1 0 0.122 0.228
2 0.236 0.180 0.265
3 0.438 0.306 0.190
4 0 0 0.564
5 NaN NaN NaN
6 0.199 0.239 0.117
7 0.0755 0.0626 0.136
8 0.102 0.162 0.137
9 0.0459 0.0613 0.227
10 0.256 0.220 0.216
11 0.0881 0.136 0.241
12 0.117 NaN 0.108
13 0.128 0 0.0681
14 0 0 0.195
15 0.118 0.0934 NaN
16 0.115 0.140 0.208
17 0.0584 0.142 0.200
18 0.123 0 0.140
19 0.197 0.177 0.202
20 0.0370 0.254 0.0927
I have the following dataframe, which has multiple columns (col1, col2, col3)
for which I need to convert into percentiles (rounded to the nearest integer, so one of 1:100). My preference - and what I assume is easiest - is to add 3 additional columns col1pctile, col2pctile, col3pctile
that maps each respective column to their percentile value (within that column).
Using the fmsb::percentile()
function on a single column returns an error due to the presence of NAs.
> fmsb::percentile(zed$col1)
Error in quantile.default(dat, probs = seq(0, 1, by = 0.01), type = 7) :
missing values and NaN's not allowed if 'na.rm' is FALSE
Although the example dataframe above only has 20 rows, my actual dataframe is many more rows than just 20, and having percentile values actually makes sense for my use-case (whereas percentiles wouldn't make sense for only 20 rows).
I will edit this post shortly with my current attempts, which aren't working as I'd hope. Any help with this would be greatly appreciated!