I was trying to compare a set of strings to an already defined set of strings. For example, you want to find the addressee of a letter, which text is digitalized via OCR.
There is an array of adresses, which has dictionaries as elements. Each element, which is unique, contains ID, Name, Street, ZIP Code and City. This list will be 1000 entries long.
Since OCR scanned text can be inaccurate, we need to find the best matching candidates of strings with the list, which contains the addresses.
The text is 750 words long. We reduce the number of words by using an appropiate filter function, which firstly splits by whitespaces, stripts more whitespaces from each element, deletes all words less then 5 characters long and removes duplicats; the resulting list is 200 words long.
Since each addressee has 4 strings (Name Street, Zip code and city) and the remaining letter ist 200 words long, my comparrisson has to run 4 * 1000 * 200 = 800'000 times.
I have used python with medium success. Matches have correctly been found. However, the algorithm takes a long time to process a lot of letters (up to 50 hrs per 1500 letters). List comprehension has been applied. Is there a way to correctly (and not unessesary) implement multithreading? What if this application needs to run on a low spec server? My 6 core CPU does not complain about such tasks, however, I do not know how much time it will take to process a lot of documents on a small AWS instance.
>> len(addressees)
1000
>> addressees[0]
{"Name": "John Doe", "Zip": 12345, "Street": "Boulevard of broken dreams 2", "City": "Stockholm"}
>> letter[:5] # already filtered
["Insurance", "Taxation", "Identification", "1592212", "St0ckhlm", "Mozart"]
>> from difflib import SequenceMatcher
>> def get_similarity_per_element(addressees, letter):
"""compare the similarity of each word in the letter with the addressees"""
ratios = []
for l in letter:
for a in addressee.items():
ratios.append(int(100 * SequenceMatcher(None, a, l).ratio())) # using ints for faster arithmatic
return max(ratios)
>> get_similarity_per_element(addressees[0], letter[:5]) # percentage of the most matching word in the letter with anything from the addressee
82
>> # then use this method to find all addressents with the max matching ratio
>> # if only one is greater then the others -> Done
>> # if more then one, but less then 3 are equal -> Interactive Promt -> Done
>> # else -> mark as not sortable -> Done.
I expected a faster processing for each document. (1 minute max), not 50 hrs per 1500 letters. I am sure this is the bottleneck, since the other tasks are working fast and flawless.
Is there a better (faster) way to do this?