This is a known bug. Take a look at GradientBoosting fails when using init
estimator parameter. and [MRG] FIX gradient boosting with sklearn estimator as init #12436
for more context.
In the meantime you can subclass GradientBoostingRegressor to avoid the issue as follows:
from sklearn.utils import check_array
class GBR_Init(GradientBoostingRegressor):
def predict(self,X):
X = check_array(X, dtype=np.float32, order='C', accept_sparse='csr')
return self._decision_function(X)
Then you can use the GBR_Init class instead of the GradientBoostingRegressor.
An example:
import numpy as np
from sklearn.datasets import load_boston
from sklearn.ensemble import GradientBoostingRegressor as GBR
from sklearn.utils import check array
class GBR_Init(GradientBoostingRegressor):
def predict(self,X):
X = check_array(X, dtype=np.float32, order='C', accept_sparse='csr')
return self._decision_function(X)
boston = load_boston()
X = boston.data
y = boston.target
base = GBR_Init(random_state=1, verbose=True)
base.fit(X, y)
Iter Train Loss Remaining Time
1 71.3024 0.00s
2 60.6243 0.00s
3 51.6694 0.00s
4 44.3657 0.00s
5 38.2831 0.00s
6 33.2863 0.00s
7 28.9190 0.00s
8 25.2967 0.18s
9 22.2587 0.16s
10 19.6923 0.14s
20 8.3119 0.13s
30 5.4763 0.07s
40 4.1906 0.07s
50 3.4663 0.05s
60 3.0437 0.04s
70 2.6753 0.03s
80 2.4451 0.02s
90 2.2376 0.01s
100 2.0142 0.00s
GBR_Init(alpha=0.9, criterion='friedman_mse', init=None, learning_rate=0.1,
loss='ls', max_depth=3, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=100, n_iter_no_change=None, presort='auto',
random_state=1, subsample=1.0, tol=0.0001, validation_fraction=0.1,
verbose=True, warm_start=False)
est = GBR_Init(init=base, random_state=1, verbose=True)
est.fit(X, y)
est.fit(X, y)
Iter Train Loss Remaining Time
1 71.3024 0.00s
2 60.6243 0.00s
3 51.6694 0.00s
4 44.3657 0.00s
5 38.2831 0.00s
6 33.2863 0.00s
7 28.9190 0.00s
8 25.2967 0.18s
9 22.2587 0.16s
10 19.6923 0.14s
20 8.3119 0.06s
30 5.4763 0.07s
40 4.1906 0.05s
50 3.4663 0.05s
60 3.0437 0.03s
70 2.6753 0.03s
80 2.4451 0.02s
90 2.2376 0.01s
100 2.0142 0.00s
Iter Train Loss Remaining Time
1 2.0069 0.00s
2 1.9844 0.00s
3 1.9729 0.00s
4 1.9670 0.00s
5 1.9409 0.00s
6 1.9026 0.00s
7 1.8850 0.00s
8 1.8690 0.00s
9 1.8450 0.00s
10 1.8391 0.14s
20 1.6879 0.06s
30 1.5695 0.04s
40 1.4469 0.05s
50 1.3431 0.03s
60 1.2329 0.03s
70 1.1370 0.02s
80 1.0616 0.02s
90 0.9904 0.01s
100 0.9228 0.00s
GBR_Init(alpha=0.9, criterion='friedman_mse',
init=GBR_Init(alpha=0.9, criterion='friedman_mse', init=None, learning_rate
=0.1,
loss='ls', max_depth=3, max_features=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0,
n_estimators=100, n_iter_no_change=None, presort='auto',
random_state=1, subsample=1.0, tol=0.0001, validation_fraction=0.1,
verbose=True, warm_start=False),
learning_rate=0.1, loss='ls', max_depth=3, max_features=None,
max_leaf_nodes=None, min_impurity_decrease=0.0,
min_impurity_split=None, min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=100, n_iter_no_change=None,
presort='auto', random_state=1, subsample=1.0, tol=0.0001,
validation_fraction=0.1, verbose=True, warm_start=False)