The problem here is that in one case .
means decimal point but in other it is a thousnads separator. And then you have ,
as decimal separator. Clearly, it is impossible for the parser to "guess" what is meant, so the only thing you can do is to decide on some rules on how to handle which case.
If you have control over the UI the best approach would be to validate user input and just reject any value that can't be parsed with an explanation on which format is expected.
If you have no control over the UI, the second best option would be to check for some "rules" and then devise which culture is appropriate for that given input and try to run it through decimal.TryParse
for that given culture.
For the given input you have, you could have the following rules:
input.StartsWith("$")
-> en-US
input.StartsWith("£")
-> en-GB
input.StartsWith("€")
|| input.EndsWith("€")
-> de-DE
These could reasonably handle all cases.
In code:
static void Main(string[] args)
{
string[] inputs =
{
"$1.30",
"£1.50",
"€2,50",
"2,50 €",
"2.500,00 €"
};
for (int i = 0; i < inputs.Length; i++)
{
Console.Write((i + 1).ToString() + ". ");
if (decimal.TryParse(inputs[i], NumberStyles.Currency,
GetAppropriateCulture(inputs[i]), out var parsed))
{
Console.WriteLine(parsed);
}
else
{
Console.WriteLine("Can't parse");
}
}
}
private static CultureInfo GetAppropriateCulture(string input)
{
if (input.StartsWith("$"))
return CultureInfo.CreateSpecificCulture("en-US");
if (input.StartsWith("£"))
return CultureInfo.CreateSpecificCulture("en-GB");
if (input.StartsWith("€") || input.EndsWith("€"))
return CultureInfo.CreateSpecificCulture("de-DE");
return CultureInfo.InvariantCulture;
}
Output:
- 1.30
- 1.50
- 2.50
- 2.50
- 2500.00