3

I have a dataframe like this:

df1= pd.DataFrame({
    'col1': [np.asarray([1,4,3,2]), np.asarray([9,10,7,5]), np.asarray([100,120,10,22])],
    'col2': [np.asarray([0,1,4,5]), np.asarray([100,101,102,103]), np.asarray([10,11,12,13])]
})

df1
                 col1                  col2
0        [1, 4, 3, 2]          [0, 1, 4, 5]
1       [9, 10, 7, 5]  [100, 101, 102, 103]
2  [100, 120, 10, 22]      [10, 11, 12, 13]

I want to sort the values of the arrays in column 2 based on the values of the arrays in column 1.

Here's my solution:

sort_idx = df1['col1'].apply(np.argsort).values
for rowidxval, (index, row) in enumerate(df1.iterrows()):
    df1['col1'][index] = df1['col1'][index][sort_idx[rowidxval]]
    df1['col2'][index] = df1['col2'][index][sort_idx[rowidxval]]

Is there an elegant, pythonic way of doing it instead of brute force sort the dataframe row-wise? What if I want to re-sort more than one column based on the values in column 1?

cs95
  • 379,657
  • 97
  • 704
  • 746
zerodark
  • 131
  • 1
  • 11

3 Answers3

5

Lists in columns are never recommended (mixed dtypes and mutable dtypes introduce bottlenecks and performance reduction in code), but you can make this as fast as possible using a list comprehension:

df['col2'] = [np.array(y)[np.argsort(x)] for x, y in zip(df.col1, df.col2)]
df

                 col1                  col2
0        [1, 4, 3, 2]          [0, 5, 4, 1]
1       [9, 10, 7, 5]  [103, 102, 100, 101]
2  [100, 120, 10, 22]      [12, 13, 10, 11]

If they are both arrays, the solution simplifies:

df['col2'] = [y[x.argsort()] for x, y in zip(df.col1, df.col2)]
df

                 col1                  col2
0        [1, 4, 3, 2]          [0, 5, 4, 1]
1       [9, 10, 7, 5]  [103, 102, 100, 101]
2  [100, 120, 10, 22]      [12, 13, 10, 11]

For more information on performance related concerns, see the section on "Mixed dtypes" in For loops with pandas - When should I care?.

cs95
  • 379,657
  • 97
  • 704
  • 746
3

Using for loop

[[z for _,z in sorted(zip(x,y))] for x, y in zip(df1.col1, df1.col2)]
Out[250]: [[0, 5, 4, 1], [103, 102, 100, 101], [12, 13, 10, 11]]

#df1.col2=[[z for _,z in sorted(zip(x,y))] for x, y in zip(df1.col1, df1.col2)]
BENY
  • 317,841
  • 20
  • 164
  • 234
0

Try and avoid using NumPy arrays within series. Such a data structure will not support vectorised computations. Since in this case all your arrays have the same size, you can easily split them into multiple columns:

# STEP 1: split NumPy arrays into separate columns
col1 = pd.DataFrame(df1.pop('col1').values.tolist()).add_prefix('col1_')
col2 = pd.DataFrame(df1.pop('col2').values.tolist()).add_prefix('col2_')
df1 = df1.join(pd.concat([col1, col2], axis=1))

# STEP 2: calculate indices for NumPy assignment
x_idx = np.arange(df1.shape[0])[:, None]
y_idx = df1.iloc[:, :4].values.argsort(1)

# STEP 3: assign via iloc
df1.iloc[:, 4:] = df1.iloc[:, 4:].values[x_idx, y_idx]

print(df1)

#    col1_0  col1_1  col1_2  col1_3  col2_0  col2_1  col2_2  col2_3
# 0       1       4       3       2       0       5       4       1
# 1       9      10       7       5     103     102     100     101
# 2     100     120      10      22      12      13      10      11
jpp
  • 159,742
  • 34
  • 281
  • 339