0
+------------+-------------+-----------------------+------------------+-------------------+---------------+------------------------------+--------+
| Technology | All Backlog | All Backlog Completed | Percent Complete | Backlog Remaining | Internal ONLY | Ext/Int & Ready For External | Non-IC |
+------------+-------------+-----------------------+------------------+-------------------+---------------+------------------------------+--------+
| Tech 1     |        2395 |                  1069 | 44.63%           |              1326 |            34 |                          219 |    822 |
+------------+-------------+-----------------------+------------------+-------------------+---------------+------------------------------+--------+

Assuming this table is a DataFrame ... (index dropped)

The 4 right columns are INT. I am looking to have them also show % completed like I have in the other columns that were formatted to show the %. Such as ...

+------------+-------------+-----------------------+------------------+-------------------+---------------+------------------------------+--------------+
| Technology | All Backlog | All Backlog Completed | Percent Complete | Backlog Remaining | Internal ONLY | Ext/Int & Ready For External |    Non-IC    |
+------------+-------------+-----------------------+------------------+-------------------+---------------+------------------------------+--------------+
| Tech 1     |        2395 |                  1069 | 44.63%           |              1326 | 34 (3.18%)    | 219 (20.48%)                 | 822 (76.89%) |
+------------+-------------+-----------------------+------------------+-------------------+---------------+------------------------------+--------------+

I've looked at map, applymap, and others ... but the only thing close I could get was:

+------------+-------------+-----------------------+------------------+-------------------+--------------------------------------+-----------------------------------------+----------------------------------------+
| Technology | All Backlog | All Backlog Completed | Percent Complete | Backlog Remaining |            Internal ONLY             |      Ext/Int & Ready For External       |                 Non-IC                 |
+------------+-------------+-----------------------+------------------+-------------------+--------------------------------------+-----------------------------------------+----------------------------------------+
| Tech 1     |        2395 |                  1069 | 44.63%           |              1326 | 34 (0 3.18% 1 3.18% dtype: float64%) | 219 (0 20.49% 1 20.49% dtype: float64%) | 822(0 76.89% 1 76.89% dtype: float64%) |
+------------+-------------+-----------------------+------------------+-------------------+--------------------------------------+-----------------------------------------+----------------------------------------+

I recognize that it is showing weird because it is trying to append a Series to the cell instead of the respective data... Hence why I am looking to map, but nothing I've found seems to match the need.

Here's the code I am currently working with.

def get_IC_percomp(df:pd.DataFrame):
    """
    This function takes in the DF of the default view's data. 
    Takes the last 3 columns and divides by items completed. 
    (Checking for 0 to avoid math issues.) --- might not be possible since comparing DF columns

    Columns to perform this on:
        Internal ONLY
        Ext/Int & Ready For External
        Non-IC

    Returns a dictionary like:    {'Column Name': data_value, ...}

    """

    logger.debug('Starting get_IC_percomp()...')

    column_list = ['Internal ONLY', 'Ext/Int & Ready For External', 'Non-IC']
    new_dict = {column: None for column in column_list}    # could also do:  dict.fromkeys(keys, None)
    for col in column_list:
        #if float(df['All Backlog Completed'].applymap(float)) == 0.0:
        #    new_dict[col] = 0
        #else:
        #    new_dict[col] = df[col] / df['All Backlog Completed']
        new_dict[col] = df[col] / df['All Backlog Completed'] * 100

    logger.debug('Ending get_IC_percomp()...')
    return new_dict

def chg_font_fmt(data_dict:dict):
    """
    This function takes in a dictionary of data and returns 
    a dictionary for use in formatting the DataFrame.

    """

    new_dict = dict()
    new_dict['Percent Complete'] = '{:.2f}%'
    new_dict['Total Percent Complete'] = '{:.2f}%'
    new_dict['Historical Percent Complete'] = '{:.2f}%'
    new_dict['Sustain Percent Complete'] = '{:.2f}%'
    if data_dict is not None:
        new_dict['Internal ONLY'] = '{:}' + ' ({}%)'.format(data_dict['Internal ONLY'])
        new_dict['Ext/Int & Ready For External'] = '{:}' + ' ({}%)'.format(data_dict['Ext/Int & Ready For External'])
        new_dict['Non-IC'] = '{:}' + '({}%)'.format(data_dict['Non-IC'])

    return new_dict

percent_dict = None
if view_str.lower() == 'default':      # default view
    percent_dict = get_IC_percomp(df)

df.format(chg_font_fmt(percent_dict)).set_properties(**{'text-align': 'center'}).render()

May have found an answer here: stackoverflow.com/a/54026256/10474024 But testing has not been fruitful.

ProsperousHeart
  • 188
  • 1
  • 14
  • Take a moment to read through the [editing help](//stackoverflow.com/editing-help) in the help center. Formatting on Stack Overflow is different than other sites. The better your post looks, the easier it is for others to read and understand it. – Patrick Artner Jan 14 '19 at 21:43
  • Not sure how that's supposed to do anything? There's no way to create a table, since HTML table isn't allowed. – ProsperousHeart Jan 14 '19 at 21:55
  • Your columns will no longer be evaluated as int, but rather object. Is that okay? – d_kennetz Jan 14 '19 at 22:39
  • Yes, at this point it no longer needs to be int, since I will be pushing to HTML using .render() – ProsperousHeart Jan 14 '19 at 22:50
  • I believe I created a solution ... testing now ... will provide answer if it works – ProsperousHeart Jan 14 '19 at 23:10

1 Answers1

0

Addition of new function map_perc required - see code below.

def get_IC_percomp(df:pd.DataFrame):
    """
    This function takes in the DF of the default view's data. 
    Takes the last 3 columns and divides by items completed. 
    (Checking for 0 to avoid math issues.) --- might not be possible since comparing DF columns

    Columns to perform this on:
        Internal ONLY
        Ext/Int & Ready For External
        Non-IC

    Returns a dictionary like:    {'Column Name': data_value, ...}

    """

    logger.debug('Starting get_IC_percomp()...')

    column_list = ['Internal ONLY', 'Ext/Int & Ready For External', 'Non-IC']
    new_dict = {column: None for column in column_list}    # could also do:  dict.fromkeys(keys, None)
    for col in column_list:
        new_dict[col] = df[col] / df['All Backlog Completed'] * 100

    logger.debug('Ending get_IC_percomp()...')
    return new_dict

def chg_font_fmt(data_dict:dict):
    """
    This function takes in a dictionary of data and returns 
    a dictionary for use in formatting the DataFrame.

    """

    new_dict = dict()
    new_dict['Percent Complete'] = '{:.2f}%'
    new_dict['Total Percent Complete'] = '{:.2f}%'
    new_dict['Historical Percent Complete'] = '{:.2f}%'
    new_dict['Sustain Percent Complete'] = '{:.2f}%'
    if data_dict is not None:
        new_dict['Internal ONLY'] = '{:}' + ' ({}%)'.format(data_dict['Internal ONLY'])
        new_dict['Ext/Int & Ready For External'] = '{:}' + ' ({}%)'.format(data_dict['Ext/Int & Ready For External'])
        new_dict['Non-IC'] = '{:}' + '({}%)'.format(data_dict['Non-IC'])

    return new_dict

def map_perc(df:pd.DataFrame, data_dict:dict):
    """
    This function takes in a df and dictionary.
    Returns DF.

    """

    def use_idx_val(row):
        """
        https://stackoverflow.com/a/54026256/10474024

        """

        idx = row.name

        row['Internal ONLY'] = '{} ({:.2f}%)'.format(row['Internal ONLY'], data_dict['Internal ONLY'][idx])
        row['Ext/Int & Ready For External'] = '{} ({:.2f}%)'.format(row['Ext/Int & Ready For External'], data_dict['Ext/Int & Ready For External'][idx])
        row['Non-IC'] = '{} ({:.2f}%)'.format(row['Non-IC'], data_dict['Non-IC'][idx])

        return row

    df = df.apply(use_idx_val, axis=1)

    return df

percent_dict = None
if view_str.lower() == 'default':      # default view
    percent_dict = get_IC_percomp(df)
    df = map_perc(df, percent_dict)

df.format(chg_font_fmt(percent_dict)).set_properties(**{'text-align': 'center'}).render()
ProsperousHeart
  • 188
  • 1
  • 14