I am reading a vendor-provided large binary array into a 2D numpy array tempfid(M, N)
# load data
data=numpy.fromfile(file=dirname+'/fid', dtype=numpy.dtype('i4'))
# convert to complex data
fid=data[::2]+1j*data[1::2]
tempfid=fid.reshape(I*J*K, N)
and then I need to reshape it into a 4D array useful4d(N,I,J,K) using non-trivial mappings for the indices. I do this with a for loop along the following lines:
for idx in range(M):
i=f1(idx) # f1, f2, and f3 are functions involving / and % as well as some lookups
j=f2(idx)
k=f3(idx)
newfid[:,i,j,k] = tempfid[idx,:] #SLOW! CAN WE IMPROVE THIS?
Converting to complex takes 33% of the time while the copying of these slices M slices takes the remaining 66%. Calculating the indices is fast irrespective of whether I do this one by one in a loop as shown or by numpy.vectorizing the operation and applying it to an arange(M).
Is there a way to speed this up? Any help on more efficient slicing, copying (or not) etc appreciated.
EDIT: As learned in the answer to question "What's the fastest way to convert an interleaved NumPy integer array to complex64?" the conversion to complex can be sped up by a factor of 6 if a view is used instead:
fid = data.astype(numpy.float32).view(numpy.complex64)