I am trying to refactor my R code (shown below) into Sparklyr R code to work on a spark dataset to get to the final result as shown in Table 1:
Using help from stack overflow post Gather in sparklyr and SparklyR separate one Spark Data Frame column into two columns I was able to reach all the way except last step dealing with Spread.
Need Help:
- Implement Spread via SparklyR
- Optimize code in any way
Table 1: Final output needed:
var n nmiss
1 Sepal.Length 150 0
2 Sepal.Width 150 0
R code to achieve it:
library(dplyr)
library(tidyr)
library(tibble)
data <- iris
data_tbl <- as_tibble(data)
profile <- data_tbl %>%
select(Sepal.Length,Sepal.Width) %>%
summarize_all(funs(
n = n(), #Count
nmiss=sum(as.numeric(is.na(.))) # MissingCount
)) %>%
gather(variable, value) %>%
separate(variable, c("var", "stat"), sep = "_(?=[^_]*$)") %>%
spread(stat, value)
Spark Code:
sdf_gather <- function(tbl){
all_cols <- colnames(tbl)
lapply(all_cols, function(col_nm){
tbl %>%
select(col_nm) %>%
mutate(key = col_nm) %>%
rename(value = col_nm)
}) %>%
sdf_bind_rows() %>%
select(c('key', 'value'))
}
profile <- data_tbl %>%
select(Sepal.Length,Sepal.Width ) %>%
summarize_all(funs(
n = n(),
nmiss=sum(as.numeric(is.na(.)))
)) %>%
sdf_gather(.) %>%
ft_regex_tokenizer(input_col="key", output_col="KeySplit", pattern="_(?=[^_]*$)") %>%
sdf_separate_column("KeySplit", into=c("var", "stat")) %>%
select(var,stat,value) %>%
sdf_register('profile')