For the conversion of a pandas dataframe to a plain numpy array, I normally use the following convenience function:
def df2numpy(df):
df.index.name = "i"
valDf = df.values
indDf = df.index
colsDf = df.columns
colDicDf = {}
for runner in range(len(df.columns)):
colDicDf[df.columns[runner]] = runner
return valDf, indDf, colDicDf
This delivers to me the
- numpy array
valDf
, - an array with the index
indDf
and - a dict
colDicDf
that can be accessed easily viacolDicDf["column_name"]
to get the index of the column I am interested in.
How would the same look like - in general terms - if I would like to convert a dataframe to a structured array?
Some helpful input might be the following code (see When to use a numpy struct or a numpy record array? ):
import numpy as np
a = np.array([['2018-04-01T15:30:00'],
['2018-04-01T15:31:00'],
['2018-04-01T15:32:00'],
['2018-04-01T15:33:00'],
['2018-04-01T15:34:00']], dtype='datetime64[s]')
c = np.array([0,1,2,3,4]).reshape(-1,1)
# create the compound dtype
dtype = np.dtype(dict(names=['date', 'val'], formats=[arr.dtype for arr in (a, c)]))
# create an empty structured array
struct = np.empty(a.shape[0], dtype=dtype)
# populate the structured array with the data from your column arrays
struct['date'], struct['val'] = a.T, c.T
print(struct)
# output:
# array([('2018-04-01T15:30:00', 0), ('2018-04-01T15:31:00', 1),
# ('2018-04-01T15:32:00', 2), ('2018-04-01T15:33:00', 3),
# ('2018-04-01T15:34:00', 4)],
# dtype=[('date', '<M8[s]'), ('val', '<i8')])