The first one is that if there are repeated letters in list of
letters, it won't return all possible results.
We can attack this problem by using a different approach to generate the permutations:
from itertools import permutations
variables = ['a', 'a', 'b', 'c']
operators = ['+', '-', '*', '/']
equations = set()
for permutation in permutations(variables):
a, b, *rest = permutation
operations = permutations(operators)
for permutation in operations:
equation = zip([a + b, *rest], permutation)
equations.add("".join(variable + operator for variable, operator in equation))
Using a set()
will eliminate any duplications caused by repeated variables.
The second problem is that there are many "equivalent" strings in the
output. Since we have the commutative and associative properties
To deal with the commutative issue, we'll use pattern matching to reduce the equations:
import sys
import re
DEBUG = True
remove = set()
# Reduce commutative equivalents: ca*a-b/ same as ac*a-b/
if DEBUG:
print("Reduce commutative equivalents:", file=sys.stderr)
for equation in equations:
if equation not in remove:
for match in re.finditer(r"(?=(.+)(\w)[+*])", equation):
a, _ = match.span(1)
_, d = match.span(2)
equivalent = equation[:a] + match[2] + match[1] + equation[d:]
if equivalent != equation and equivalent in equations:
remove.add(equivalent)
if DEBUG:
print(f"Removed {equivalent} same as {equation}", file=sys.stderr)
equations -= remove
Because we've built all equations as ab op c op d op, etc. I don't believe we generate the associative equivalents, but if we did, we could use a similar technique to try to thin them out:
remove = set()
# Reduce associative equivalents aa+b*c- same as ab*ab*+c-
if DEBUG:
print("Reduce associative equivalents:", file=sys.stderr)
for equation in equations:
if equation not in remove:
for match in re.finditer(r"(?=(\w)([+])(\w)([*]))", equation):
a, _ = match.span(1)
_, d = match.span(4)
equivalent = equation[:a] + match[3] + match[4] + match[1] + match[3] + match[4] + match[2] + equation[d:]
if equivalent != equation and equivalent in equations:
remove.add(equivalent)
if DEBUG:
print(f"Removed {equivalent} same as {equation}", file=sys.stderr)
equations -= remove
And finally dump out our reduced set:
if DEBUG:
print("Final equations:", file=sys.stderr)
print(equations)
OUTPUT
> python3 test.py
Reduce commutative equivalents:
Removed ac+a-b/ same as ca+a-b/
Removed ab*a/c- same as ba*a/c-
Removed cb*a/a- same as bc*a/a-
Removed ac+b-a/ same as ca+b-a/
Removed ba+c/a- same as ab+c/a-
Removed ba+a-c/ same as ab+a-c/
Removed ac+a/b- same as ca+a/b-
Removed ac+b/a- same as ca+b/a-
Removed ac*b-a/ same as ca*b-a/
Removed bc*a-a/ same as cb*a-a/
Removed ca*a-b/ same as ac*a-b/
Removed ba*a-c/ same as ab*a-c/
Removed cb+a/a- same as bc+a/a-
Removed ba+c-a/ same as ab+c-a/
Removed ca*a/b- same as ac*a/b-
Removed ca*b/a- same as ac*b/a-
Removed ba+a/c- same as ab+a/c-
Removed ab*c-a/ same as ba*c-a/
Removed ab*c/a- same as ba*c/a-
Removed cb+a-a/ same as bc+a-a/
Reduce associative equivalents:
Final equations:
{'ca+a-b/', 'cb*a+a-', 'aa/b-c*', 'ba/c-a*', 'cb/a-a*', 'ab+a*c/', 'aa/c+b-',
'bc/a-a+', 'aa*b+c-', 'ba*a/c-', 'ab+c/a*', 'ca-a/b+', 'ca-b+a*', 'bc*a/a-',
'bc/a+a*', 'ac+a/b*', 'bc+a*a-', 'ca/a-b+', 'ac-a*b+', 'ba-a*c/', 'ac/b-a*',
'ba-c+a*', 'ba+a-c*', 'aa+b/c-', 'ca-b*a/', 'ca+b-a/', 'ab+c/a-', 'ac*b+a-',
'aa+c-b/', 'aa*c/b-', 'ab/c*a+', 'ac+b/a*', 'aa+b*c/', 'ab-a*c+', 'ac+a-b*',
'cb-a+a*', 'cb*a/a+', 'ab-c/a+', 'ac*b+a/', 'ba*c/a+', 'ba/c+a*', 'aa-b*c+',
'aa/b+c*', 'ab-c*a+', 'ac+a*b/', 'ac/b+a-', 'aa*b-c+', 'ac-a+b/', 'aa-c*b+',
'ab+a-c/', 'aa-c+b/', 'ba+c*a/', 'ca-b*a+', 'ab-a/c*', 'aa-b/c+', 'ac*a+b/',
'ba/a+c-', 'ba-c/a+', 'cb/a+a*', 'ca+b/a*', 'aa/c*b+', 'ac-a+b*', 'ba-a+c*',
'ca+a*b/', 'aa+b/c*', 'aa/c-b+', 'bc*a/a+', 'ca+a/b-', 'ca+b/a-', 'ca*b-a/',
'ac/b*a-', 'aa*b/c+', 'ba/a*c+', 'bc/a*a+', 'ca-b+a/', 'ac/b+a*', 'aa*b/c-',
'bc-a+a/', 'ca/b-a*', 'ba-c*a/', 'cb*a-a/', 'ba-c/a*', 'aa*b+c/', 'ac*a-b/',
'ca*b/a+', 'aa+b-c*', 'ba/a-c*', 'ca-b/a+', 'ab/c-a+', 'cb+a/a*', 'aa-c/b*',
'ba+c*a-', 'cb*a+a/', 'aa*c/b+', 'ab/c+a*', 'ca+b-a*', 'aa+b-c/', 'ac-b*a/',
'ab*a-c/', 'ba-a*c+', 'ba*c+a-', 'bc/a*a-', 'ba*c-a+', 'ba/c*a+', 'ab-c+a/',
'ba*c+a/', 'ca*a-b+', 'bc+a/a-', 'aa+c*b-', 'ab+c*a-', 'ac-a/b+', 'ca+a-b*',
'aa+c-b*', 'ab/c*a-', 'ab+c-a/', 'bc+a/a*', 'ac-a/b*', 'ab/a-c*', 'ac/a-b+',
'bc-a/a+', 'ab+a*c-', 'ac/a-b*', 'ca*a+b-', 'ab/a-c+', 'ab-a*c/', 'cb/a*a-',
'ac/a+b*', 'bc-a/a*', 'ac-b+a*', 'ac*a/b-', 'ba*a+c-', 'ba/a-c+', 'bc/a+a-',
'aa/b-c+', 'cb+a-a*', 'ca-b/a*', 'ca+b*a-', 'ac*b/a-', 'ca-a+b/', 'ca/b*a-',
'ba+a/c*', 'cb-a*a+', 'ac+a*b-', 'aa*b-c/', 'aa*c-b/', 'ac/a*b+', 'aa-c+b*',
'ca*a+b/', 'ca/b+a-', 'ac*a/b+', 'aa+c/b-', 'ab/c+a-', 'ab+a/c-', 'cb-a+a/',
'ab*a-c+', 'ab-a+c*', 'ab+a/c*', 'ac/b-a+', 'ab*c+a/', 'ba/c+a-', 'ba/c*a-',
'cb-a*a/', 'ac+b*a-', 'ba+c-a*', 'ac/b*a+', 'cb/a*a+', 'cb-a/a+', 'bc*a+a/',
'ac*b/a+', 'cb+a*a-', 'ba*c-a/', 'ca-a*b/', 'ca-a*b+', 'ab/a*c-', 'ba-a+c/',
'ba*a/c+', 'bc-a+a*', 'ca+a/b*', 'ca*a/b+', 'aa*c+b-', 'ba*c/a-', 'bc/a-a*',
'ca/a+b*', 'ab-a+c/', 'ca/b*a+', 'ab-a/c+', 'cb*a-a+', 'aa-b/c*', 'ac-b/a+',
'aa*c-b+', 'ab*c+a-', 'cb/a-a+', 'ab/a+c*', 'ba+a*c-', 'ba*a+c/', 'ba-a/c*',
'aa/b+c-', 'ba/c-a+', 'ca/b-a+', 'ab*a/c+', 'bc+a-a*', 'bc*a-a+', 'ab+c*a/',
'ab-c*a/', 'ac*a+b-', 'ca/a+b-', 'ac/a*b-', 'ac+b-a*', 'ba/a+c*', 'ba-a/c+',
'ab*c/a+', 'cb/a+a-', 'ca/a-b*', 'ac-b/a*', 'ab/a*c+', 'ca*b+a/', 'ac-a*b/',
'aa/b*c+', 'aa/c-b*', 'ca/a*b+', 'bc-a*a/', 'ca+b*a/', 'aa*c+b/', 'ab*a+c/',
'bc+a*a/', 'ab-c/a*', 'ca-a+b*', 'aa-c*b/', 'cb-a/a*', 'aa+b*c-', 'ca+a*b-',
'aa-b+c*', 'ac/a+b-', 'ba-c+a/', 'ba-c*a+', 'ca*b-a+', 'ac-b+a/', 'aa-b*c/',
'aa-b+c/', 'ac*a-b+', 'ac+b*a/', 'ca/a*b-', 'bc+a-a/', 'bc-a*a+', 'ba+a*c/',
'ac*b-a+', 'aa/c+b*', 'ab/a+c-', 'ab/c-a*', 'ab-c+a*', 'ba+c/a*', 'ab*c-a+',
'ab+a-c*', 'cb+a*a/', 'ac-b*a+', 'ba/a*c-', 'ab*a+c-', 'ab+c-a*', 'bc*a+a-',
'aa/b*c-', 'ca*b+a-', 'ba*a-c+', 'ca/b+a*', 'aa-c/b+', 'aa+c/b*', 'ca-a/b*',
'aa/c*b-', 'aa+c*b/'}
>
I'm not claiming a perfect solution, just illustrating some of the tools available to you to solve your problem.