The Standard allows for implementations on platforms where memory is divided into discrete regions which cannot be reached from each other using pointer arithmetic. As a simple example, some platforms use 24-bit addresses that consist of an 8-bit bank number and a 16-bit address within a bank. Adding one to an address that identifies the last byte of a bank will yield a pointer to the first byte of that same bank, rather than the first byte of the next bank. This approach allows address arithmetic and offsets to be computed using 16-bit math rather than 24-bit math, but requires that no object span a bank boundary. Such a design would impose some extra complexity on malloc
, and would likely result in more memory fragmentation than would otherwise occur, but user code wouldn't generally need to care about the partitioning of memory into banks.
Many platforms do not have such architectural restrictions, and some compilers which are designed for low-level programming on such platforms will allow address arithmetic to be performed between arbitrary pointers. The Standard notes that a common way of treating Undefined Behavior is "behaving during translation or program execution in a documented manner characteristic of the environment", and support for generalized pointer arithmetic in environments that support it would fit nicely under that category. Unfortunately, the Standard fails to provide any means of distinguishing implementations that behave in such useful fashion and those which don't.