Sorry if I've been googling the wrong keywords, but I haven't been able to find an efficient way to replace all instances of an integer in a DataFrame column with its corresponding indexed value from a secondary Series.
I'm working with the output of a third party program that strips the row and column labels from an input matrix and replaces them with their corresponding indices. I'd like to restore the true labels from the indices.
I have a dummy example of the dataframe and series in question:
In [6]: df
Out[6]:
idxA idxB var2
0 0 1 2.0
1 0 2 3.0
2 2 4 2.0
3 2 1 1.0
In [8]: labels
Out[8]:
0 A
1 B
2 C
3 D
4 E
Name: label, dtype: object
Currently, I'm converting the series to a dictionary and using replace
:
label_dict = labels.to_dict()
df['idxA'] = df.idxA.replace(label_dict)
df['idxB'] = df.idxB.replace(label_dict)
which does give me the expected result:
In [12]: df
Out[12]:
idxA idxB var2
0 A B 2.0
1 A C 3.0
2 C E 2.0
3 C B 1.0
However, this is very slow for my full dataset (approximately 3.8 million rows in the table, and 19,000 labels). Is there a more efficient way to approach this?
Thanks!
EDIT: I accepted @coldspeed's answer. Couldn't paste a code block in the comment reply to his answer, but his solution sped up the dummy code by about an order of magnitude:
In [10]: %timeit df.idxA.replace(label_dict)
4.41 ms ± 132 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
In [11]: %timeit df.idxA.map(labels)
435 µs ± 3.93 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)