I am stuck in a simple looking problem in Tensorflow.
Traceback (most recent call last):
File op_def_library.py, line 510, in _apply_op_helper
preferred_dtype=default_dtype)
File ops.py, line 1040, in internal_convert_to_tensor
ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
File ops.py, line 883, in _TensorTensorConversionFunction
(dtype.name, t.dtype.name, str(t)))
ValueError: Tensor conversion requested dtype int64 for Tensor with dtype float32: 'Tensor("sequence_sparse_softmax_cross_entropy/zeros_like:0", shape=(?, ?, 10004), dtype=float32)'
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "red.py", line 281, in <module>
main()
File "red.py", line 99, in main
sequence_length=lengths)
File loss.py, line 225, in sequence_sparse_softmax_cross_entropy
losses = xloss(labels=labels, logits=logits)
File loss.py", line 48, in loss
post = array_ops.where(target_tensor > zeros, target_tensor - sigmoid_p, zeros)
gen_math_ops.py, line 2924, in greater
"Greater", x=x, y=y, name=name)
op_def_library.py, line 546, in _apply_op_helper
inferred_from[input_arg.type_attr]))
TypeError: Input 'y' of 'Greater' Op has type float32 that does not match type int64 of argument 'x'
Using as type also does not work.
I just defined another function to be used. I defined it and tried to use it. What should I do to make it work? I just want to define a function that takes tensors as input just like tf cross entropy function. Please suggest how to do that.
In particular, how can I resolve the error?