Im running tpot with dask running on kubernetes cluster on gcp, the cluster is 24 cores 120 gb memory with 4 nodes of kubernetes, my kubernetes yaml is
apiVersion: v1
kind: Service
metadata:
name: daskd-scheduler
labels:
app: daskd
role: scheduler
spec:
ports:
- port: 8786
targetPort: 8786
name: scheduler
- port: 8787
targetPort: 8787
name: bokeh
- port: 9786
targetPort: 9786
name: http
- port: 8888
targetPort: 8888
name: jupyter
selector:
app: daskd
role: scheduler
type: LoadBalancer
---
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: daskd-scheduler
spec:
replicas: 1
template:
metadata:
labels:
app: daskd
role: scheduler
spec:
containers:
- name: scheduler
image: uyogesh/daskml-tpot-gcpfs # CHANGE THIS TO BE YOUR DOCKER HUB IMAGE
imagePullPolicy: Always
command: ["/opt/conda/bin/dask-scheduler"]
resources:
requests:
cpu: 1
memory: 20000Mi # set aside some extra resources for the scheduler
ports:
- containerPort: 8786
---
apiVersion: extensions/v1beta1
kind: Deployment
metadata:
name: daskd-worker
spec:
replicas: 3
template:
metadata:
labels:
app: daskd
role: worker
spec:
containers:
- name: worker
image: uyogesh/daskml-tpot-gcpfs # CHANGE THIS TO BE YOUR DOCKER HUB IMAGE
imagePullPolicy: Always
command: [
"/bin/bash",
"-cx",
"env && /opt/conda/bin/dask-worker $DASKD_SCHEDULER_SERVICE_HOST:$DASKD_SCHEDULER_SERVICE_PORT_SCHEDULER --nthreads 8 --nprocs 1 --memory-limit 5e9",
]
resources:
requests:
cpu: 2
memory: 20000Mi
My data is 4 million rows and 77 columns, whenever i run fit on the tpot classifier, it runs on the dask cluster for a while then it crashes, the output log looks like
KilledWorker:
("('gradientboostingclassifier-fit-1c9d29ce92072868462946c12335e5dd',
0, 4)", 'tcp://10.8.1.14:35499')
I tried increasing threads per worker as suggested by the dask distributed docs, yet the problem persists. Some observations i have made are:
It'll take longer time to crash if n_jobs is less (for n_jobs=4, it ran for 20 mins before crashing) where as crashes instantly for n_jobs=-1.
It'll actually start working and get optimized model for fewer data, with 10000 data it works fine.
So my question is, what changes and modifications do i need to make this work, I guess its doable as ive heard dask is capable of handling even bigger data than mine.