I recently answered a question where the OP was looking multiple columns with multiple different values to an existing dataframe (link). And it's fairly succinct, but I don't think very fast.
Ultimately I was hoping I could do something like:
# Existing dataframe
df = pd.DataFrame({'a':[1,2]})
df[['b','c']] = 0
Which would result in:
a b c
1 0 0
2 0 0
But it throws an error.
Is there a super simple way to do this that I'm missing? Or is the answer I posted earlier the fastest / easiest way?
NOTE
I understand this could be done via loops, or via assigning scalars to multiple columns, but am trying to avoid that if possible. Assume 50 columns or whatever number you wouldn't want to write:
df['b'], df['c'], ..., df['xyz'] = 0, 0, ..., 0
Not a duplicate:
The "Possible duplicate" question suggested to this shows multiple different values assigned to each column. I'm simply asking if there is a very easy way to assign a single scalar value to multiple new columns. The answer could correctly and very simply be, "No" - but worth knowing so I can stop searching.