The smallest change to achieve this is
isPartOf :: [Char] -> Char -> Int
isPartOf [] a = (-1) -- was: 0
isPartOf (a:b) c
| a == c = 0
| otherwise = 1 + -- was: isPartOf b c
if (isPartOf b c) < 0 then (-2) else (isPartOf b c)
This is terrible computationally though. It recalculates the same value twice; what's worse is that the calculation is done with the recursive call and so the recursive call will be done twice and the time complexity overall will change from linear to exponential!
Let's not do that. But also, what's so special about Char
? There's lots of stuff special about the Char
but none are used here, except the comparison, (==)
.
The types the values of which can be compared by equality are known as those belonging to the Eq
(for "equality") type class: Eq a => a
. a
is a type variable capable of assuming any type whatsoever; but here it is constrained to be such that ... yes, belongs to the Eq
type class.
And so we write
isPartOf :: Eq a => [a] -> a -> Int
isPartOf [] a = (-1)
isPartOf (a:b) c
| a == c = 0
| otherwise = let d = isPartOf b c in
1 + if d < 0 then (-2) else d
That (-2)
looks terribly ad-hoc! A more compact and idiomatic version using guards will also allow us to address this:
isPartOf :: Eq a => [a] -> a -> Int
isPartOf [] a = (-1)
isPartOf (a:b) c
| a == c = 0
| d < 0 = d
| otherwise = 1 + d
where
d = isPartOf b c
Yes, we can define d
in the where
clause, and use it in our guards, as well as in the body of each clause. Thanks to laziness it won't even be calculated once if its value wasn't needed, like in the first clause.
Now this code is passable.
The conditional passing and transformation is captured by the Maybe
data type's Functor
interface / instance:
fmap f Nothing = Nothing -- is not changed
fmap f (Just x) = Just (f x) -- is changed
which is what the other answer here is using. But it could be seen as "fancy" when we only start learning Haskell.
When you've written more functions like that, and become "fed up" with repeating the same pattern manually over and over, you'll come to appreciate it and will want to use it. But only then.
Yet another concern is that our code calculates its result on the way back from the recursion's base case.
But it could instead calculate it on the way forward, towards it, so it can return it immediately when the matching character is found. And if the end of list is found, discard the result calculated so far, and return (-1)
instead. This is the approach taken by the second answer.
Though creating an additional function litters the global name space. It is usual to do this by defining it internally, in the so called "worker/wrapper" transformation:
isPartOf :: Eq a => [a] -> a -> Int
isPartOf xs c = go xs 0
where
go [] i = (-1)
go (a:b) i
| a == c = i
| otherwise = -- go b (1 + i)
go b $! (1 + i)
Additional boon is that we don't need to pass around the unchanged value c
-- it is available in the outer scope, from the point of view of the internal "worker" function go
, "wrapped" by and accessible only to our function, isPartOf
.
$!
is a special call operator which ensures that its argument value is calculated right away, and not delayed. This eliminates an unwanted (in this case) laziness and improves the code efficiency even more.
But from the point of view of overall cleanliness of the design it is better to return the index i
wrapped in a Maybe
(i.e. Just i
or Nothing
) instead of using a "special" value which is not so special after all -- it is still an Int
.
It is good to have types reflect our intentions, and Maybe Int
expresses it clearly and cleanly, so we don't have to remember which of the values are special and which regular, so that that knowledge is not external to our program text, but inherent to it.
It is a small and easy change, combining the best parts from the two previous variants:
isPartOf :: Eq a => [a] -> a -> Maybe Int
isPartOf .....
.......
....... Nothing .....
.......
....... Just i .....
.......
(none of the code was tested. if there are errors, you're invited to find them and correct them, and validate it by testing).