I want to use the pd.DataFrame.sum with apply. However, the signature seems inoperative
I started here: python pandas: apply a function with arguments to a series, to understand what it took to pass parameters to a function using apply. I tried the answer which seems more suitable (the third) and still the use of arguments seem inoperative.
indexes = ['2017-09-01 01:15:00', '2017-09-01 01:30:00',
'2017-09-01 01:54:00', '2017-09-01 01:59:00',
'2017-09-01 02:15:00', '2017-09-01 02:30:00',
'2017-09-01 02:54:00', '2017-09-01 02:59:00',
'2017-09-01 05:15:00', '2017-09-01 05:30:00',
'2017-09-01 05:54:00', '2017-09-01 05:59:00']
values_A = [1, 3, 4, 3, 5, 6, 3, 3, 9, 1, 9, 8]
values_B = [1, 3, 4, 3, 5, 6, 3, 3, 9, 2, 6, 3]
table = pd.DataFrame({'datetime' : indexes, 'A' : values_A, 'B' : values_B})
table['datetime'] = pd.to_datetime(table['datetime'])
table.set_index('datetime', inplace=True)
table.sort_index(inplace=True)
What I wanted (and obtain using
table.groupby([pd.Grouper(freq='60Min', base=0)]).sum(skipna=True)
):
2017-09-01 01:00:00 11.0 11.0
2017-09-01 02:00:00 17.0 17.0
2017-09-01 03:00:00 NaN NaN
2017-09-01 04:00:00 NaN NaN
2017-09-01 05:00:00 27.0 20.0
What I get (using
table.groupby([pd.Grouper(freq='60Min',base=0)]).apply(pd.Series.sum, skipna = True):
2017-09-01 01:00:00 11.0 11.0
2017-09-01 02:00:00 17.0 17.0
2017-09-01 03:00:00 0.0 0.0
2017-09-01 04:00:00 0.0 0.0
2017-09-01 05:00:00 27.0 20.0