Main problem is after selecting old
column get DataFrame
instead Series
, so map
implemented yet to Series
failed.
Here should be duplicated column old
, so if select one column it return all columns old
in DataFrame
:
df = pd.DataFrame([[1,3,8],[4,5,3]], columns=['old','old','col'])
print (df)
old old col
0 1 3 8
1 4 5 3
print(df['old'])
old old
0 1 3
1 4 5
#dont use dict like variable, because python reserved word
df['new'] = df['old'].map(d)
print (df)
AttributeError: 'DataFrame' object has no attribute 'map'
Possible solution for deduplicated this columns:
s = df.columns.to_series()
new = s.groupby(s).cumcount().astype(str).radd('_').replace('_0','')
df.columns += new
print (df)
old old_1 col
0 1 3 8
1 4 5 3
Another problem should be MultiIndex
in column, test it by:
mux = pd.MultiIndex.from_arrays([['old','old','col'],['a','b','c']])
df = pd.DataFrame([[1,3,8],[4,5,3]], columns=mux)
print (df)
old col
a b c
0 1 3 8
1 4 5 3
print (df.columns)
MultiIndex(levels=[['col', 'old'], ['a', 'b', 'c']],
codes=[[1, 1, 0], [0, 1, 2]])
And solution is flatten MultiIndex
:
#python 3.6+
df.columns = [f'{a}_{b}' for a, b in df.columns]
#puthon bellow
#df.columns = ['{}_{}'.format(a,b) for a, b in df.columns]
print (df)
old_a old_b col_c
0 1 3 8
1 4 5 3
Another solution is map by MultiIndex
with tuple and assign to new tuple
:
df[('new', 'd')] = df[('old', 'a')].map(d)
print (df)
old col new
a b c d
0 1 3 8 A
1 4 5 3 D
print (df.columns)
MultiIndex(levels=[['col', 'old', 'new'], ['a', 'b', 'c', 'd']],
codes=[[1, 1, 0, 2], [0, 1, 2, 3]])