When trying to predict using a simple model I've previously trained I get the following error:
Tensor input_1:0, specified in either feed_devices or fetch_devices was not found in the Graph
at line:
seatbelt_model.predict(image_arr, verbose=1)
in code:
from tensorflow import keras
import tensorflow as tf
import numpy as np
graph = tf.get_default_graph()
seatbelt_model = keras.models.load_model(filepath='./graphs/seatbelt_A_3_81.h5')
class SeatbeltPredictor:
INPUT_SHAPE = (-1, 120, 160, 1)
@staticmethod
def predict_seatbelt(image_arr):
with graph.as_default():
image_arr = np.array(image_arr).reshape(SeatbeltPredictor.INPUT_SHAPE)
predicted_labels = seatbelt_model.predict(image_arr, verbose=1)
return predicted_labels
The model has the following shape:
input_layer = keras.layers.Input(shape=(IMAGE_HEIGHT, IMAGE_WIDTH, 1))
conv_0 = keras.layers.Conv2D(filters=32, kernel_size=[5, 5], activation=tf.nn.relu, padding="SAME")(input_layer)
pool_0 = keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="VALID")(conv_0)
conv_1 = keras.layers.Conv2D(filters=32, kernel_size=[5, 5], activation=tf.nn.relu, padding="SAME")(pool_0)
pool_1 = keras.layers.MaxPool2D(pool_size=[2, 2], strides=2, padding="VALID")(conv_1)
flat_0 = keras.layers.Flatten()(pool_1)
dense_0 = keras.layers.Dense(units=1024, activation=tf.nn.relu)(flat_0)
drop_0 = keras.layers.Dropout(rate=0.4, trainable=True)(dense_0)
dense_1 = keras.layers.Dense(units=2, activation=tf.nn.softmax)(drop_0)
If I run the following, I get a tensor result:
graph.get_tensor_by_name('input_1:0')
<tf.Tensor 'input_1:0' shape=(?, 120, 160, 1) dtype=float32>
The name of the first layer is input_1
image_arr is of shape (1, 120, 160, 1)
Tensorflow 1.12
Any ideas?