I use the following code to load data from HDFS
:
spark
.read
.option("header", "true")
.option("mergeSchema", "true")
.format("parquet")
.load("hdfs")
when I tried to load about 3,000,000 files, I will get a exception as:
java.lang.OutOfMemoryError: Java heap space
at java.util.Arrays.copyOfRange(Arrays.java:3664)
at java.lang.String.<init>(String.java:201)
at java.lang.StringBuilder.toString(StringBuilder.java:407)
at java.io.ObjectInputStream$BlockDataInputStream.readUTFBody(ObjectInputStream.java:3072)
at java.io.ObjectInputStream$BlockDataInputStream.readUTF(ObjectInputStream.java:2867)
at java.io.ObjectInputStream.readString(ObjectInputStream.java:1639)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1342)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1993)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1918)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.readArray(ObjectInputStream.java:1707)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1345)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1993)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1918)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.defaultReadFields(ObjectInputStream.java:1993)
at java.io.ObjectInputStream.readSerialData(ObjectInputStream.java:1918)
at java.io.ObjectInputStream.readOrdinaryObject(ObjectInputStream.java:1801)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1351)
at java.io.ObjectInputStream.readArray(ObjectInputStream.java:1707)
at java.io.ObjectInputStream.readObject0(ObjectInputStream.java:1345)
at java.io.ObjectInputStream.readObject(ObjectInputStream.java:371)
at org.apache.spark.serializer.JavaDeserializationStream.readObject(JavaSerializer.scala:75)
at org.apache.spark.serializer.JavaSerializerInstance.deserialize(JavaSerializer.scala:108)
at org.apache.spark.scheduler.DirectTaskResult.value(TaskResult.scala:88)
at org.apache.spark.scheduler.TaskResultGetter$$anon$3$$anonfun$run$1.apply$mcV$sp(TaskResultGetter.scala:72)
at org.apache.spark.scheduler.TaskResultGetter$$anon$3$$anonfun$run$1.apply(TaskResultGetter.scala:63)
at org.apache.spark.scheduler.TaskResultGetter$$anon$3$$anonfun$run$1.apply(TaskResultGetter.scala:63)
at org.apache.spark.util.Utils$.logUncaughtExceptions(Utils.scala:1948)
at org.apache.spark.scheduler.TaskResultGetter$$anon$3.run(TaskResultGetter.scala:62)
The file format is .snappy.parquet
, and size for each file was about 100KB
, for each file the schema is as:
id, String
type, String
att, String
pre, String
tag, Map[String, String]
day, Int
the partition information:
.repartition($"day", $"type", $"att")
.write
.partitionBy("day", "type", "att")
When I tried about 107,000 files, works fine.
For this step, the spark just load the metadata of files, why need so many memory space?
Is there a limit for how many files can load from HDFS
?