I am writing the training code for TwoStream-IQA which is a two-stream convolutional neural network. This model predicts the quality score for the patches being assessed through two streams of the network. In the training below, I have used test dataset provided in the GitHub link above.
The training code is as below:
import os
import time
import numpy as np
import argparse
import chainer
chainer.global_config.train=True
from chainer import cuda
from chainer import serializers
from chainer import optimizers
from chainer import iterators
from chainer import training
from chainer.training import extensions
from PIL import Image
from sklearn.feature_extraction.image import extract_patches
from model import Model
parser = argparse.ArgumentParser(description='train.py')
parser.add_argument('--model', '-m', default='',
help='path to the trained model')
parser.add_argument('--gpu', '-g', default=0, type=int, help='GPU ID')
args = parser.parse_args()
model = Model()
cuda.cudnn_enabled = True
cuda.check_cuda_available()
xp = cuda.cupy
model.to_gpu()
## prepare training data
test_label_path = 'data_list/test.txt'
test_img_path = 'data/live/'
test_Graimg_path = 'data/live_grad/'
save_model_path = '/models/nr_sana_2stream.model'
patches_per_img = 256
patchSize = 32
print('-------------Load data-------------')
final_train_set = []
with open(test_label_path, 'rt') as f:
for l in f:
line, la = l.strip().split() # for debug
tic = time.time()
full_path = os.path.join(test_img_path, line)
Grafull_path = os.path.join(test_Graimg_path, line)
inputImage = Image.open(full_path)
Graf = Image.open(Grafull_path)
img = np.asarray(inputImage, dtype=np.float32)
Gra = np.asarray(Graf, dtype=np.float32)
img = img.transpose(2, 0, 1)
Gra = Gra.transpose(2, 0, 1)
img1 = np.zeros((1, 3, Gra.shape[1], Gra.shape[2]))
img1[0, :, :, :] = img
Gra1 = np.zeros((1, 3, Gra.shape[1], Gra.shape[2]))
Gra1[0, :, :, :] = Gra
patches = extract_patches(img, (3, patchSize, patchSize), patchSize)
Grapatches = extract_patches(Gra, (3, patchSize, patchSize), patchSize)
X = patches.reshape((-1, 3, patchSize, patchSize))
GraX = Grapatches.reshape((-1, 3, patchSize, patchSize))
temp_slice1 = [X[int(float(index))] for index in range(256)]
temp_slice2 = [GraX[int(float(index))] for index in range(256)]
##############################################
for j in range(len(temp_slice1)):
temp_slice1[j] = xp.array(temp_slice1[j].astype(np.float32))
temp_slice2[j] = xp.array(temp_slice2[j].astype(np.float32))
final_train_set.append((
np.asarray((temp_slice1[j], temp_slice2[j])).astype(np.float32),
int(la)
))
##############################################
print('--------------Done!----------------')
print('--------------Iterator!----------------')
train_iter = iterators.SerialIterator(final_train_set, batch_size=4)
optimizer = optimizers.Adam()
optimizer.use_cleargrads()
optimizer.setup(model)
updater = training.StandardUpdater(train_iter, optimizer, device=0)
print('--------------Trainer!----------------')
trainer = training.Trainer(updater, (50, 'epoch'), out='result')
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(['epoch', 'iteration', 'main/loss', 'elapsed_time']))
print('--------------Running trainer!----------------')
trainer.run()
But the code is producing error on line trainer.run()
as:
-------------Load data-------------
--------------Done!----------------
--------------Iterator!----------------
--------------Trainer!----------------
--------------Running trainer!----------------
Exception in main training loop: Unsupported dtype object
Traceback (most recent call last):
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/trainer.py", line 316, in run
update()
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/updaters/standard_updater.py", line 149, in update
self.update_core()
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/updaters/standard_updater.py", line 154, in update_core
in_arrays = self.converter(batch, self.device)
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/dataset/convert.py", line 149, in concat_examples
return to_device(device, _concat_arrays(batch, padding))
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/dataset/convert.py", line 37, in to_device
return cuda.to_gpu(x, device)
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/backends/cuda.py", line 285, in to_gpu
return _array_to_gpu(array, device_, stream)
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/backends/cuda.py", line 333, in _array_to_gpu
return cupy.asarray(array)
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/cupy/creation/from_data.py", line 60, in asarray
return core.array(a, dtype, False)
File "cupy/core/core.pyx", line 2049, in cupy.core.core.array
File "cupy/core/core.pyx", line 2083, in cupy.core.core.array
Will finalize trainer extensions and updater before reraising the exception.
Traceback (most recent call last):
File "<ipython-input-69-12b84b41c6b9>", line 1, in <module>
runfile('/mnt/nas/sanaalamgeer/Projects/1/MyOwnChainer/Two-stream_IQA-master/train.py', wdir='/mnt/nas/sanaalamgeer/Projects/1/MyOwnChainer/Two-stream_IQA-master')
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/spyder_kernels/customize/spydercustomize.py", line 668, in runfile
execfile(filename, namespace)
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/spyder_kernels/customize/spydercustomize.py", line 108, in execfile
exec(compile(f.read(), filename, 'exec'), namespace)
File "/mnt/nas/sanaalamgeer/Projects/1/MyOwnChainer/Two-stream_IQA-master/train.py", line 129, in <module>
trainer.run()
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/trainer.py", line 330, in run
six.reraise(*sys.exc_info())
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/six.py", line 693, in reraise
raise value
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/trainer.py", line 316, in run
update()
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/updaters/standard_updater.py", line 149, in update
self.update_core()
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/training/updaters/standard_updater.py", line 154, in update_core
in_arrays = self.converter(batch, self.device)
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/dataset/convert.py", line 149, in concat_examples
return to_device(device, _concat_arrays(batch, padding))
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/dataset/convert.py", line 37, in to_device
return cuda.to_gpu(x, device)
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/backends/cuda.py", line 285, in to_gpu
return _array_to_gpu(array, device_, stream)
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/chainer/backends/cuda.py", line 333, in _array_to_gpu
return cupy.asarray(array)
File "/home/sanaalamgeer/anaconda3/lib/python3.6/site-packages/cupy/creation/from_data.py", line 60, in asarray
return core.array(a, dtype, False)
File "cupy/core/core.pyx", line 2049, in cupy.core.core.array
File "cupy/core/core.pyx", line 2083, in cupy.core.core.array
ValueError: Unsupported dtype object
Maybe thats's because I am arraging training data
wrong because the model takes training parameters as:
length = x_data.shape[0]
x1 = Variable(x_data[0:length:2])
x2 = Variable(x_data[1:length:2])
and y_data
as:
t = xp.repeat(y_data[0:length:2], 1)
The variable final_train_set
prepapres dataset of a tuple (Numpy Array, 66)
where every Numpy Array
has dimensions (2, 3, 32, 32)
which carries two types patches (3, 32, 32)
.
I have used dataset from the github link provided above. I am a newbie in Chainer,Please help!!