I am using keras in R for a classification problem.
I used model <- keras_model_sequential()
with 3 layers
parallel.model <- multi_gpu_model(model, gpus=2)
parallel.model %>% compile(
loss = loss_binary_crossentropy,
optimizer = optimizer_adam(lr = 0.001, epsilon = 1e-08),
metrics = c("accuracy"))
parallel.model %>% fit(
train.x,
y.train,
epochs = 50,
batch_size = 256,
validation_split = 0.2)
When I used
y.test.hat <- parallel.model %>% predict_classes(test.y)
I got this error:
Error in py_get_attr_impl(x, name, silent) :
AttributeError: 'Model' object has no attribute 'predict_classes'
Calls: %>% ... py_get_attr_or_item -> py_get_attr -> py_get_attr_impl
Is it because parallel.model is not sequential? Because I got the same error when I used:
parallel.model %>% pop_layer()