I am sending a base64 encoded image via AJAX POST to a model stored in Google CloudML. I am getting an error telling me that my input_fn(): is failing to decode the image and transform it into jpeg.
Error:
Prediction failed: Error during model execution:
AbortionError(code=StatusCode.INVALID_ARGUMENT,
details="Expected image (JPEG, PNG, or GIF), got
unknown format starting with 'u\253Z\212f\240{\370
\351z\006\332\261\356\270\377' [[{{node map/while
/DecodeJpeg}} = DecodeJpeg[_output_shapes=
[[?,?,3]], acceptable_fraction=1, channels=3,
dct_method="", fancy_upscaling=true, ratio=1,
try_recover_truncated=false,
_device="/job:localhost/replica:0 /task:0
/device:CPU:0"](map/while/TensorArrayReadV3)]]")
Below is the full Serving_input_receiver_fn():
The first step I believe is to handle the incoming b64 encoded string and decode it. This is done with:
image = tensorflow.io.decode_base64(image_str_tensor)
The next step I believe is to open the bytes, but this is where I dont know how to handle the decoded b64 string with tensorflow code and need help.
With a python Flask app this can be done with:
image = Image.open(io.BytesIO(decoded))
- pass the bytes through to get decoded by
tf.image.decode_jpeg
????
image = tensorflow.image.decode_jpeg(image_str_tensor, channels=CHANNELS)
Full input_fn(): code
def serving_input_receiver_fn():
def prepare_image(image_str_tensor):
image = tensorflow.io.decode_base64(image_str_tensor)
image = tensorflow.image.decode_jpeg(image_str_tensor, channels=CHANNELS)
image = tensorflow.expand_dims(image, 0) image = tensorflow.image.resize_bilinear(image, [HEIGHT, WIDTH], align_corners=False)
image = tensorflow.squeeze(image, axis=[0])
image = tensorflow.cast(image, dtype=tensorflow.uint8)
return image
How do I decode my b64 string back into jpeg and then convert the jpeg to a tensor?