I have a data frame that is mostly tidy but 2 columns contain benchmarks rather than incorporating the benchmarks as observations. How do I tidy this so both "Facility_score" and "TTP" col_names are added as observations under "Facility_label" for each unique FYQ and Metric combination?
Input data:
library(zoo)
dd <- structure(list(Facility_label = structure(c(1L, 1L, 1L, 1L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L), .Label = c("A", "B", "C",
"D", "Nashville"), class = "factor"), FYQ = structure(c(2017.75,
2018, 2018.25, 2018.5, 2017.75, 2018, 2018.25, 2018.5, 2018.75,
2017.75, 2018, 2018.25, 2018.5, 2018.75, 2017.75, 2018, 2018.25,
2018.5, 2018.75, 2017.75, 2018, 2018.25, 2018.5, 2018.75, 2017.75,
2018, 2018.25, 2018.5, 2018.75, 2017.75), class = "yearqtr"),
Metric = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L,
1L, 1L, 1L, 1L, 1L, 2L), .Label = c("Safety Recall", "Turnaround days",
"Consult Active <= 30d", "Consult Pending <- 7d", "Consult Scheduling <- 90d",
"ICB Compliance Rate", "FCA Assessment", "Minor construction execution",
"NRM funding execution", "Deficincies", "%Deficienceis corrected among corrected or action plan",
"%Deficienceis corrected or action plan", "Ratio of Hospital Staff to HR FTE",
"Turnover Rate", "GEMS no Action", "Lost time claims", "RTMS risk score",
"DOC Control", "Loaner deficiencies", "Pretreatment", "RME rate",
"SPS staff vacany rate", "Stock Inactive", "MSPV-NG", "Days to close prosthetis consult",
"%Prosthetic PO using national contracts"), class = "factor"),
Facility_score = c(84.78802993, 95.59659091, 100, 100, 77.61732852,
57.87671233, 81.28898129, 33.33333333, 31.57894737, 10.2,
7.902356902, 8.62, 11.71, 13.15, 30.98236776, 33.26086957,
31.19584055, 54.54545455, 27.27272727, 11, 17.19132653, 26.02008197,
22.29, 30.41, 89.09090909, 93.47826087, 82.10735586, 91.66666667,
87.5, 3.2), `Facility mean` = c(85.35550152, 87.31899147,
93.11498231, 100, 85.35550152, 87.31899147, 93.11498231,
100, 100, 12, 13.06073298, 12.2, 11.51, 10.56, 85.35550152,
87.31899147, 93.11498231, 100, 100, 12, 13.06073298, 12.2,
11.51, 10.56, 85.35550152, 87.31899147, 93.11498231, 100,
100, 12), TTP_score = c(100, 100, 100, 100, 100, 100, 100,
100, 100, 5.65, 5.063953488, 4.779310345, 4.47, 4.545, 100,
100, 100, 100, 100, 5.65, 5.063953488, 4.779310345, 4.47,
4.545, 100, 100, 100, 100, 100, 5.65)), row.names = c(NA,
-30L), class = c("tbl_df", "tbl", "data.frame"))
Desired output:
dd_output <- structure(list(Facility_label = c("A", "Facility mean", "TTP score",
"A", "Facility mean", "TTP score", "A", "Facility mean", "TTP score",
"A", "Facility mean", "TTP score", "B", "B", "B", "B", "B", "B",
"Facility mean", "TTP score", "B", "Facility mean", "TTP score",
"B", "Facility mean", "TTP score", "B", "Facility mean", "TTP score",
"B", "Facility mean", "TTP score", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "D", "D", "D", "D", "D", "D"), FYQ = c("2017 Q4",
"2017 Q4", "2017 Q4", "2018 Q1", "2018 Q1", "2018 Q1", "2018 Q2",
"2018 Q2", "2018 Q2", "2018 Q3", "2018 Q3", "2018 Q3", "2017 Q4",
"2018 Q1", "2018 Q2", "2018 Q3", "2018 Q4", "2017 Q4", "2017 Q4",
"2017 Q4", "2018 Q1", "2018 Q1", "2018 Q1", "2018 Q2", "2018 Q2",
"2018 Q2", "2018 Q3", "2018 Q3", "2018 Q3", "2018 Q4", "2018 Q4",
"2018 Q4", "2017 Q4", "2018 Q1", "2018 Q2", "2018 Q3", "2018 Q4",
"2017 Q4", "2018 Q1", "2018 Q2", "2018 Q3", "2018 Q4", "2017 Q4",
"2018 Q1", "2018 Q2", "2018 Q3", "2018 Q4", "2017 Q4"), Metric = c("Safety Recall",
"Safety Recall", "safety Recall", "Safety Recall", "Safety Recall",
"Safety Recall", "Safety Recall", "Safety Recall", "Safety Recall",
"Safety Recall", "Safety Recall", "Safety Recall", "Safety Recall",
"Safety Recall", "Safety Recall", "Safety Recall", "Safety Recall",
"Turnaround days", "Turnaround days", "Turnaround days", "Turnaround days",
"Turnaround days", "Turnaround days", "Turnaround days", "Turnaround days",
"Turnaround days", "Turnaround days", "Turnaround days", "Turnaround days",
"Turnaround days", "Turnaround days", "Turnaround days", "Safety Recall",
"Safety Recall", "Safety Recall", "Safety Recall", "Safety Recall",
"Turnaround days", "Turnaround days", "Turnaround days", "Turnaround days",
"Turnaround days", "Safety Recall", "Safety Recall", "Safety Recall",
"Safety Recall", "Safety Recall", "Turnaround days"), Facility_score = c(84.78802993,
85.35550152, 100, 95.59659091, 87.31899147, 100, 100, 93.11498231,
100, 100, 100, 100, 77.61732852, 57.87671233, 81.28898129, 33.33333333,
31.57894737, 10.2, 12, 5.65, 7.902356902, 13.06073298, 5.063953488,
8.62, 12.2, 4.779310345, 11.71, 11.51, 4.47, 13.15, 10.56, 4.545,
30.98236776, 33.26086957, 31.19584055, 54.54545455, 27.27272727,
11, 17.19132653, 26.02008197, 22.29, 30.41, 89.09090909, 93.47826087,
82.10735586, 91.66666667, 87.5, 3.2)), class = c("spec_tbl_df",
"tbl_df", "tbl", "data.frame"), row.names = c(NA, -48L), spec = structure(list(
cols = list(X1 = structure(list(), class = c("collector_skip",
"collector")), Facility_label = structure(list(), class = c("collector_character",
"collector")), FYQ = structure(list(), class = c("collector_character",
"collector")), Metric = structure(list(), class = c("collector_character",
"collector")), Facility_score = structure(list(), class = c("collector_double",
"collector"))), default = structure(list(), class = c("collector_guess",
"collector")), skip = 1), class = "col_spec"))