I have data frame like this dummy sample, my real dataset had 56 variables. I would like to drop the date and aggregate by id and sum last 4 total variables while keep the other unchanged.
df <- data.frame(stringsAsFactors=FALSE,
date = c("2019-02-10", "2019-02-10", "2019-02-11", "2019-02-11",
"2019-02-12", "2019-02-12", "2019-02-13", "2019-02-13",
"2019-02-14", "2019-02-14"),
id = c("18100410-aa", "18101080-ae", "18100410-aa", "18101080-ae",
"18100410-aa", "18101080-ae", "18100410-aa", "18101080-ae",
"18100410-aa", "18101080-ae"),
f_type = c(4L, 2L, 4L, 2L, 4L, 2L, 4L, 2L, 4L, 2L),
reg = c(6L, 7L, 6L, 7L, 6L, 7L, 6L, 7L, 6L, 7L),
hh_p10 = c(2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L),
internet = c(1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L, 1L, 2L),
youngest = c(5L, 7L, 5L, 7L, 5L, 7L, 5L, 7L, 5L, 7L),
a_group = c(3L, 6L, 3L, 6L, 3L, 6L, 3L, 6L, 3L, 6L),
total_prd = c(130L, 337L, 374L, 261L, 106L, 230L, 150L, 36L, 15L, 123L),
B_totalprod = c(20L, 0L, 256L, 0L, 32L, 0L, 0L, 36L, 0L, 45L),
p_totalprod = c(0L, 81L, 11L, 260L, 26L, 230L, 0L, 0L, 15L, 0L),
n_totalprod = c(110L, 256L, 107L, 1L, 48L, 0L, 150L, 0L, 0L, 78L)
)
I found this solution from plyr package here it is working but I need to specify all my 52 unaffected variables. I am just wondering is there any other way to do this task?
library(plyr)
ddply(df,.(id,f_type, reg, internet,hh_p10 ,youngest, a_group ),summarise,total_prd = sum(total_prd) ,
B_totalprod = sum(B_totalprod) , p_totalprod = sum(p_totalprod) ,
n_totalprod = sum(n_totalprod))