I want to display the number of elements in each partition, so I write the following:
def count_in_a_partition(iterator):
yield sum(1 for _ in iterator)
If I use it like this
print("number of element in each partitions: {}".format(
my_rdd.mapPartitions(count_in_a_partition).collect()
))
I get the following:
19/02/18 21:41:15 INFO DAGScheduler: Job 3 failed: collect at /project/6008168/tamouze/testSparkCedar.py:435, took 30.859710 s
19/02/18 21:41:15 INFO DAGScheduler: ResultStage 3 (collect at /project/6008168/tamouze/testSparkCedar.py:435) failed in 30.848 s due to Stage cancelled because SparkContext was shut down
19/02/18 21:41:15 INFO MapOutputTrackerMasterEndpoint: MapOutputTrackerMasterEndpoint stopped!
19/02/18 21:41:16 INFO MemoryStore: MemoryStore cleared
19/02/18 21:41:16 INFO BlockManager: BlockManager stopped
19/02/18 21:41:16 INFO BlockManagerMaster: BlockManagerMaster stopped
19/02/18 21:41:16 INFO OutputCommitCoordinator$OutputCommitCoordinatorEndpoint: OutputCommitCoordinator stopped!
19/02/18 21:41:16 WARN BlockManager: Putting block rdd_3_14 failed due to exception java.net.SocketException: Connection reset.
19/02/18 21:41:16 WARN BlockManager: Block rdd_3_14 could not be removed as it was not found on disk or in memory
19/02/18 21:41:16 WARN BlockManager: Putting block rdd_3_3 failed due to exception java.net.SocketException: Connection reset.
19/02/18 21:41:16 WARN BlockManager: Block rdd_3_3 could not be removed as it was not found on disk or in memory
19/02/18 21:41:16 INFO SparkContext: Successfully stopped SparkContext
....
noting that my_rdd.take(1)
return :
[(u'id', u'text', array([-0.31921682, ...,0.890875]))]
How can I solve this issue?