The losses have remained the same and have not fallen as expected. Here is my Code to test if the loss function work well:
def my_loss(y_true, y_pred):
return tf.reduce_mean(tf.sigmoid(-200 * (y_pred - 1.05)))
model.compile(optimizer=tf.train.AdamOptimizer(),
loss=ml.my_loss,
metrics=['mae', ml.my_metrics])
and here is the output:
5000/28976 [====>.........................] - ETA: 0s - loss: 1.0000 - mean_absolute_error: 1.0406 - my_metrics: 0.0000e+00 10000/28976 [=========>....................] - ETA: 0s - loss: 1.0000 - mean_absolute_error: 1.0412 - my_metrics: 0.0000e+00 15000/28976 [==============>...............] - ETA: 0s - loss: 1.0000 - mean_absolute_error: 1.0412 - my_metrics: 0.0000e+00 20000/28976 [===================>..........] - ETA: 0s - loss: 1.0000 - mean_absolute_error: 1.0411 - my_metrics: 0.0000e+00 28976/28976 [==============================] - 0s 10us/step - loss: 1.0000 - mean_absolute_error: 1.0407 - my_metrics: 0.0000e+00