1

I am currently working on a project where I need to create an image of a stroke smoothed out given some ordered coordinates of the stroke. Suppose I have some points

import numpy as np
X = np.array([1, 3, 6, 8, 5])
Y = np.array([1, 8, 4, 4, 1])
plt.plot(X, Y)

figure-1

But what I want is making a smoothed out points collection which will plot this (This is just a hand drawn picture, I think you got the point):

hand drawing

I have seen this question which works for only functions (one x will only output one y). But I need a spline for a relation (not a function). Thank you in advance.

Reblochon Masque
  • 35,405
  • 10
  • 55
  • 80
Rahat Zaman
  • 1,322
  • 14
  • 32

3 Answers3

4

See chaikin's algorithm.

Chaikin algorithm is a geometric algorithms that works with the control polygon directly. The curve generation scheme is based upon “corner cutting” where the algorithm generates a new control polygon by cutting the corners off the original one.
The figure below illustrates this idea, where an initial control polygon has been refined into a second polygon (slightly offset) by cutting off the corners of the first sequence.

enter image description here

Here is an example implementation.

"""
polygoninterpolation.py
Chaikin's Algorith for curves
http://graphics.cs.ucdavis.edu/~joy/GeometricModelingLectures/Unit-7-Notes/Chaikins-Algorithm.pdf
"""
import math
import random
from graphics import *


class MultiLine:

    def __init__(self, points=None, rgb_color=(255, 255, 255), width=1):
        self.lines = []
        if points is None:
            self.points = []
        else:
            self.points = points
            self._build_lines()
        self.rgb_color = rgb_color
        self.width = width

    def add_point(self):
        self.points.append(point)

    def _build_lines(self):
        for idx, point in enumerate(self.points[:-1]):
            self.lines.append(Line(self.points[idx], self.points[idx + 1]))

    def draw(self, win):
        for line in self.lines:
            line.setOutline(color_rgb(*self.rgb_color))
            line.setWidth(self.width)
            line.draw(win)


def get_chaikin(points, factor=4):
    new_points = []   # [points[0]]
    for idx in range(len(points) - 1):
        p1, p2 = points[idx], points[idx+1]
        p_one_qtr, p_three_qtr = get_quarter_points(p1, p2, factor)
        new_points.append(p_one_qtr)
        new_points.append(p_three_qtr)
    return new_points   # + [points[-1]]  # for a closed polygon


def get_quarter_points(p1, p2, factor=4):
    n = factor
    qtr_x = (p2.x - p1.x) / n
    qtr_y = (p2.y - p1.y) / n
    return Point(p1.x + qtr_x, p1.y + qtr_y), \
           Point(p1.x + (n-1) * qtr_x, p1.y + (n-1) * qtr_y)


win = GraphWin("My Window", 500, 500)
win.setBackground(color_rgb(0, 0, 0))


# points0 = [Point(250, 20),
#            Point(20, 400),
#            Point(480, 400)]

# points0 = [Point(20, 400),
#            Point(35, 200),
#            Point(250, 100),
#            Point(400, 150),
#            Point(450, 350),
#            Point(380, 450)]

# points0 = [Point(20, 400),
#            Point(35, 200),
#            Point(250, 100),
#            Point(400, 150),
#            Point(220, 170),
#            Point(310, 190),
#            Point(180, 270),
#            Point(450, 230),
#            Point(440, 440),
#            Point(380, 450)]

points0 = [Point(random.randrange(500), random.randrange(500)) for _ in range(random.randrange(3, 80))]

x_line0 = MultiLine(points0)
# x_line0.draw(win)

points1 = get_chaikin(points0)
x_line1 = MultiLine(points1, rgb_color=(200, 200, 200), width=1)
# x_line1.draw(win)

points2 = get_chaikin(points1)
x_line2 = MultiLine(points2, rgb_color=(200, 200, 200), width=1)
# x_line2.draw(win)

points3 = get_chaikin(points2)
x_line3 = MultiLine(points3, rgb_color=(200, 200, 200), width=1)
# x_line3.draw(win)

points4 = get_chaikin(points3)
x_line4 = MultiLine(points4, rgb_color=(200, 200, 200), width=1)
# x_line4.draw(win)

points5 = get_chaikin(points4)
x_line5 = MultiLine(points5, rgb_color=(200, 200, 200), width=1)
x_line5.draw(win)


# poly0 = Polygon(points0)
# poly0.setOutline(color_rgb(0, 255, 0))
# poly0.setWidth(1)
# poly0.draw(win)
#
# points1 = get_chaikin(points0 + [points0[0]])
# poly1 = Polygon(points1)
# poly1.setOutline(color_rgb(0, 255, 0))
# poly1.setWidth(1)
# poly1.draw(win)
#
# points2 = get_chaikin(points1 + [points1[0]])
# poly2 = Polygon(points2)
# poly2.setOutline(color_rgb(0, 255, 0))
# poly2.setWidth(1)
# poly2.draw(win)
#
# points3 = get_chaikin(points2 + [points2[0]])
# poly3 = Polygon(points3)
# poly3.setOutline(color_rgb(0, 255, 0))
# poly3.setWidth(1)
# poly3.draw(win)
#
# points4 = get_chaikin(points3 + [points3[0]])
# poly4 = Polygon(points4)
# poly4.setOutline(color_rgb(0, 255, 0))
# poly4.setWidth(1)
# poly4.draw(win)
#
# points5 = get_chaikin(points4 + [points4[0]])
# poly5 = Polygon(points5)
# poly5.setOutline(color_rgb(0, 255, 0))
# poly5.setWidth(2)
# poly5.draw(win)


print("done")


print(win.getMouse())
win.close()
Reblochon Masque
  • 35,405
  • 10
  • 55
  • 80
4

You can use B-spline (splprep and splev) from scipy.interpolate:

import numpy as np
from scipy.interpolate import splprep, splev
import matplotlib.pyplot as plt

X = np.array([1, 3, 6, 8, 5])
Y = np.array([1, 8, 4, 4, 1])
pts = np.vstack((X, Y))
# Find the B-spline representation of an N-dimensional curve
tck, u = splprep(pts, s=0.0)
u_new = np.linspace(u.min(), u.max(), 1000)
# Evaluate a B-spline
x_new, y_new = splev(u_new, tck)

plt.plot(x_new, y_new, 'b--')
plt.show()

That will give you something similar for what you asked:

enter image description here

You can play with the splprep parameters to change the result. You can find more details in this StackOverflow post.

Noam Peled
  • 4,484
  • 5
  • 43
  • 48
1

The above answers are very elegant, but here's an attempt for a "hacky" solution, that's much less smooth

X_new = []
Y_new = []
for i in range(4):
    line1 = [X[i],Y[i]] + np.expand_dims(np.linspace(0,1,10),-1)*np.array([X[i+1] - X[i], Y[i+1] - Y[i]])

    line_normal = [- Y[i+1] + Y[i], X[i+1] - X[i]]
    line_normal = line_normal/np.sqrt(np.dot(line_normal, line_normal))

    line1_noisy = line1 + line_normal * 0.2*(np.random.rand(10,1) - 0.5)
    X_new.append(line1_noisy[:,0])
    Y_new.append(line1_noisy[:,1])
X_new = np.stack(X_new).reshape(-1)
Y_new = np.stack(Y_new).reshape(-1)
plt.plot(X_new, Y_new)

enter image description here

orli
  • 181
  • 1
  • 5
  • I am sorry for the bad drawing in my question, but the output plot is not expected to be noisy. And also just taking 3 points for drawing a line for a specific point may not be a good idea. – Rahat Zaman Feb 22 '19 at 07:50