How to speed up your Python code
Your largest time sink is np.cos
which performs several checks on the format of the input.
These are relevant and usually negligible for high-dimensional inputs, but for your one-dimensional input, this becomes the bottleneck.
The solution to this is to use math.cos
, which only accepts one-dimensional numbers as input and thus is faster (though less flexible).
Another time sink is indexing x
multiple times.
You can speed this up by having one state variable which you update and only writing to x
once per iteration.
With all of this, you can speed up things by a factor of roughly ten:
import numpy as np
from math import cos
nIter = 1000000
Step = .001
x = np.zeros(1+nIter)
state = x[0] = 1
for i in range(nIter):
state += Step*state**2*cos(Step*i+state)
x[i+1] = state
Now, your main problem is that your truly innermost loop happens completely in Python, i.e., you have a lot of wrapping operations that eat up time.
You can avoid this by using uFuncs (e.g., created with SymPy’s ufuncify
) and using NumPy’s accumulate
:
import numpy as np
from sympy.utilities.autowrap import ufuncify
from sympy.abc import t,y
from sympy import cos
nIter = 1000000
Step = 0.001
state = x[0] = 1
f = ufuncify([y,t],y+Step*y**2*cos(t+y))
times = np.arange(0,nIter*Step,Step)
times[0] = 1
x = f.accumulate(times)
This runs practically within an instant.
… and why that’s not what you should worry about
If your exact code (and only that) is what you care about, then you shouldn’t worry about runtime anyway, because it’s very short either way.
If on the other hand, you use this to gauge efficiency for problems with a considerable runtime, your example will fail because it considers only one initial condition and is a very simple dynamics.
Moreover, you are using the Euler method, which is either not very efficient or robust, depending on your step size.
The latter (Step
) is absurdly low in your case, yielding much more data than you probably need:
With a step size of 1, You can see what’s going on just fine.
If you want a robust integration in such cases, it’s almost always best to use a modern adaptive integrator, that can adjust its step size itself, e.g., here is a solution to your problem using a native Python integrator:
from math import cos
import numpy as np
from scipy.integrate import solve_ivp
T = 1000
dt = 0.001
x = solve_ivp(
lambda t,state: state**2*cos(t+state),
t_span = (0,T),
t_eval = np.arange(0,T,dt),
y0 = [1],
rtol = 1e-5
).y
This automatically adjusts the step size to something higher, depending on the error tolerance rtol
.
It still returns the same amount of output data, but that’s via interpolation of the solution.
It runs in 0.3 s for me.
How to speed up things in a scalable manner
If you still need to speed up something like this, chances are that your derivative (f
) is considerably more complex than in your example and thus it is the bottleneck.
Depending on your problem, you may be able to vectorise its calcultion (using NumPy or similar).
If you can’t vectorise, I wrote a module that specifically focusses on this by hard-coding your derivative under the hood.
Here is your example in with a sampling step of 1.
import numpy as np
from jitcode import jitcode,y,t
from symengine import cos
T = 1000
dt = 1
ODE = jitcode([y(0)**2*cos(t+y(0))])
ODE.set_initial_value([1])
ODE.set_integrator("dop853")
x = np.hstack([ODE.integrate(t) for t in np.arange(0,T,dt)])
This runs again within an instant. While this may not be a relevant speed boost here, this is scalable to huge systems.