Welcome to SO.
If everything what you have are the two alternatives, then the first one could be better.
Prefer using STL array or vector instead of a C array
You should avoid to use C++ plain arrays since you need to manage yourself the memory allocating/deallocating with new/delete
and other boilerplate code like keep track of the size/check bounds. In clearly words "C arrays are less safe, and have no advantages over array and vector."
However, there are some important drawbacks in the first alternative. Something I would like to highlight is that:
std::vector<std::vector<std::vector<T>>>
is not a 3-d matrix. In a matrix, all the rows must have the same size. On the other hand, in a "vector of vectors" there is no guarantee that all the nested vectors have the same length. The reason is that a vector is a linear 1-D structure as pointed out in the @spectras answer. Hence, to avoid all sort of bad or unexpected behaviours, you must to include guards in your code to obtain the rectangular invariant guaranteed.
Luckily, the first alternative is not the only one you may have in hands.
For example, you can replace the c-style array by a std::array:
const int n = i_size * j_size * k_size;
std::array<int, n> myFlattenMatrix;
or use std::vector
in case your matrix dimensions can change.
Accessing element by its 3 coordinates
Regarding your question
To access the specific location of (i,j,k) easily, operator
overloading is necessary(am I right?).
Not exactly. Since there isn't a 3-parameter operator for neither std::vector nor array, you can't overload it. But you can create a template class or function to wrap it for you. In any case you will must to deference the 3 vectors or calculate the flatten index of the element in the linear storage.
Considering do not use a third part matrix library like Eigen for your experiments
You aren't coding it for production but for research purposes instead. Particularly, your research is exactly regarding the performance of algorithms. In that case, I prefer do not recommend to use a third part library, like Eigen, absolutely. Of course it depends a lot of what kind of "speed of an algorithm" metrics are you willing to gather, but Eigen, for instance, will do a lot of things under the hood (like vectorization) which will have a tremendous influence on your experiments. Since it will be hard for you to control those unseen optimizations, these library's features may lead you to wrong conclusions about your algorithms.
Algorithm's performance and big-o notation
Usually, the performance of algorithms are analysed by using the big-O approach where factors like the actual time spent, hardware speed or programming language traits aren't taken in account. The book "Data Structures and Algorithms in C++" by Adam Drozdek can provide more details about it.