You have clarified that the arrays will always be of equal size. That's a prerequisite condition.
So, your situation is as follows. You have vector A over here, and vector B over there. You have no guarantees whether the actual memory that vector A uses and the actual memory that vector B uses are next to each other. They could be anywhere.
Now you're combining the two vectors into a third vector, C. Again, no guarantees where vector C's memory is.
So, you have really very little to work with, in terms of optimizations. You have no additional guarantees whatsoever. This is pretty much fundamental: you have two chunks of bytes, and those two chunks need to be copied somewhere else. That's it. That's what has to be done, that's what it all comes down to, and there is no other way to get it done, other than doing exactly that.
But there is one thing that can be done to make things a little bit faster. A vector will typically allocate memory for its values in incremental steps, reserving some extra space, initially, and as values get added to the vector, one by one, and eventually reach the vector's reserved size, the vector has to now grab a new larger block of memory, copy everything in the vector to the larger memory block, then delete the older block, and only then add the next value to the vector. Then the cycle begins again.
But you know, in advance, how many values you are about to add to the vector, so you simply instruct the vector to reserve
() enough size in advance, so it doesn't have to repeatedly grow itself, as you add values to it. Before your existing for
loop, simply:
pairVector.reserve(pairVector.size()+strVector.size());
Now, the for
loop will proceed and insert new values into pairVector
which is guaranteed to have enough space.
A couple of other things are possible. Since you have stated that both vectors will always have the same size, you only need to check the size of one of them:
for (int i = 0; i < strVector.size(); ++i )
Next step: at()
performs bounds checking. This loop ensures that i
will never be out of bounds, so at()
's bound checking is also some overhead you can get rid of safely:
pairVector.push_back(pair<string, int> (strVector[i], intVector[i]));
Next: with a modern C++ compiler, the compiler should be able to optimize away, automatically, several redundant temporaries, and temporary copies here. It's possible you may need to help the compiler, a little bit, and use emplace_back
() instead of push_back
() (assuming C++11, or later):
pairVector.emplace_back(strVector[i], intVector[i]);
Going back to the loop condition, strVector.size()
gets evaluated on each iteration of the loop. It's very likely that a modern C++ compiler will optimize it away, but just in case you can also help your compiler check the vector's size()
only once:
int i=strVector.size();
for (int i = 0; i < n; ++i )
This is really a stretch, but it might eke out a few extra quantums of execution time. And that pretty much all obvious optimizations here. Realistically, the most to be gained here is by using reserve()
. The other optimizations might help things a little bit more, but it all boils down to moving a certain number of bytes from one area in memory to another area. There aren't really special ways of doing that, that's faster than other ways.