I know that python loops themselves are relatively slow when compared to other languages but when the correct functions are used they become much faster. I have a pandas dataframe called "acoustics" which contains over 10 million rows:
print(acoustics)
timestamp c0 rowIndex
0 2016-01-01T00:00:12.000Z 13931.500000 8158791
1 2016-01-01T00:00:30.000Z 14084.099609 8158792
2 2016-01-01T00:00:48.000Z 13603.400391 8158793
3 2016-01-01T00:01:06.000Z 13977.299805 8158794
4 2016-01-01T00:01:24.000Z 13611.000000 8158795
5 2016-01-01T00:02:18.000Z 13695.000000 8158796
6 2016-01-01T00:02:36.000Z 13809.400391 8158797
7 2016-01-01T00:02:54.000Z 13756.000000 8158798
and there is the code I wrote:
acoustics = pd.read_csv("AccousticSandDetector.csv", skiprows=[1])
weights = [1/9, 1/18, 1/27, 1/36, 1/54]
sumWeights = np.sum(weights)
deltaAc = []
for i in range(5, len(acoustics)):
time = acoustics.iloc[i]['timestamp']
sum = 0
for c in range(5):
sum += (weights[c]/sumWeights)*(acoustics.iloc[i]['c0']-acoustics.iloc[i-c]['c0'])
print("Row " + str(i) + " of " + str(len(acoustics)) + " is iterated")
deltaAc.append([time, sum])
deltaAc = pd.DataFrame(deltaAc)
It takes a huge amount of time, how can I make it faster?