I'm using pyspark to generate a dataframe where I need to update 'amt' column with previous row's 'amt' value only when amt = 0.
For example, below is my dataframe
+---+-----+
| id|amt |
+---+-----+
| 1| 5|
| 2| 0|
| 3| 0|
| 4| 6|
| 5| 0|
| 6| 3|
+---+-----+
Now, I want the following DF to be created. whenever amt = 0, modi_amt col will contain previous row's non zero value, else no change.
+---+-----+----------+
| id|amt |modi_amt |
+---+-----+----------+
| 1| 5| 5|
| 2| 0| 5|
| 3| 0| 5|
| 4| 6| 6|
| 5| 0| 6|
| 6| 3| 3|
+---+-----+----------+
I'm able to get the previous rows value but need help for the rows where multiple 0 amt appears (example, id = 2,3)
code I'm using :
from pyspark.sql.window import Window
my_window = Window.partitionBy().orderBy("id")
DF= DF.withColumn("prev_amt", F.lag(DF.amt).over(my_window))
DF= DF.withColumn("modi_amt",when(DF.amt== 0,DF.prev_amt).otherwise(DF.amt)).drop('prev_amt')
I'm getting the below DF
+---+-----+----------+
| id|amt |modi_amt |
+---+-----+----------+
| 1| 5| 5|
| 2| 0| 5|
| 3| 0| 0|
| 4| 6| 6|
| 5| 0| 6|
| 6| 3| 3|
+---+-----+----------+
basically id 3 also should have modi_amt = 5