If you can sample the data with high enough resolution around the feature of interest, then more sparsely everywhere else, the problem definition then becomes how to define the area under each sample. This is easy with regular rectangular samples, and could likely be done stepwise in increments of resolution around the origin. The approach I went after is to generate the 2D Voronoi cells for each sample in order to determine their area. I pulled most of the code from this answer, as it had almost all the components needed already.
import numpy as np
from scipy.spatial import Voronoi
#taken from: # https://stackoverflow.com/questions/28665491/getting-a-bounded-polygon-coordinates-from-voronoi-cells
#computes voronoi regions bounded by a bounding box
def square_voronoi(xy, bbox): #bbox: (min_x, max_x, min_y, max_y)
# Select points inside the bounding box
points_center = xy[np.where((bbox[0] <= xy[:,0]) * (xy[:,0] <= bbox[1]) * (bbox[2] <= xy[:,1]) * (bbox[2] <= bbox[3]))]
# Mirror points
points_left = np.copy(points_center)
points_left[:, 0] = bbox[0] - (points_left[:, 0] - bbox[0])
points_right = np.copy(points_center)
points_right[:, 0] = bbox[1] + (bbox[1] - points_right[:, 0])
points_down = np.copy(points_center)
points_down[:, 1] = bbox[2] - (points_down[:, 1] - bbox[2])
points_up = np.copy(points_center)
points_up[:, 1] = bbox[3] + (bbox[3] - points_up[:, 1])
points = np.concatenate((points_center, points_left, points_right, points_down, points_up,), axis=0)
# Compute Voronoi
vor = Voronoi(points)
# Filter regions (center points should* be guaranteed to have a valid region)
# center points should come first and not change in size
regions = [vor.regions[vor.point_region[i]] for i in range(len(points_center))]
vor.filtered_points = points_center
vor.filtered_regions = regions
return vor
#also stolen from: https://stackoverflow.com/questions/28665491/getting-a-bounded-polygon-coordinates-from-voronoi-cells
def area_region(vertices):
# Polygon's signed area
A = 0
for i in range(0, len(vertices) - 1):
s = (vertices[i, 0] * vertices[i + 1, 1] - vertices[i + 1, 0] * vertices[i, 1])
A = A + s
return np.abs(0.5 * A)
def f(x,y):
return np.cos(10*x*y) * np.exp(-x**2 - y**2)
#sampling could easily be shaped to sample origin more heavily
sample_x = np.random.rand(1000) * 10 - 5 #same range as example linspace
sample_y = np.random.rand(1000) - .5
sample_xy = np.array([sample_x, sample_y]).T
vor = square_voronoi(sample_xy, (-5,5,-.5,.5)) #using bbox from samples
points = vor.filtered_points
sample_areas = np.array([area_region(vor.vertices[verts+[verts[0]],:]) for verts in vor.filtered_regions])
sample_z = np.array([f(p[0], p[1]) for p in points])
volume = np.sum(sample_z * sample_areas)
I haven't exactly tested this, but the principle should work, and the math checks out.