2

I have a function that includes x and y as independent variables and I want to fit the parameters to the data and function and plot a surface figure. I saw that if the variables have two different dimensions, I can use np.meshgrid(x,y), but then how do I find the parameters a,b,c? My code looks like this:

import matplotlib.pyplot as plt
from scipy.optimize import curve_fit
import numpy as np

x = np.array([1,0.5,0.33,0.25,0.2])
y = np.array([1e-9,1e-8,1e-7,1e-6,1e-5,1e-4,1e-3,1e-2,1e-1,1e0,1e1,1e2,1e3,1e4,1e5])

def func(x,y,a,b,c):
    return (1-(a/(a+y)^b))*(1-np.exp(-c*x))

x,y = np.meshgrid(x,y)

Can I still use curve_fit for this type of function? If so, how can I use it to find a,b,c and also plot the 3d function?

mj1496
  • 61
  • 1
  • 9

1 Answers1

2

Here is an example with 3D scatterplot, 3D surface plot, and a contour plot.

import numpy, scipy, scipy.optimize
import matplotlib
from mpl_toolkits.mplot3d import  Axes3D
from matplotlib import cm # to colormap 3D surfaces from blue to red
import matplotlib.pyplot as plt

graphWidth = 800 # units are pixels
graphHeight = 600 # units are pixels

# 3D contour plot lines
numberOfContourLines = 16


def SurfacePlot(func, data, fittedParameters):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)

    matplotlib.pyplot.grid(True)
    axes = Axes3D(f)

    x_data = data[0]
    y_data = data[1]
    z_data = data[2]

    xModel = numpy.linspace(min(x_data), max(x_data), 20)
    yModel = numpy.linspace(min(y_data), max(y_data), 20)
    X, Y = numpy.meshgrid(xModel, yModel)

    Z = func(numpy.array([X, Y]), *fittedParameters)

    axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap=cm.coolwarm, linewidth=1, antialiased=True)

    axes.scatter(x_data, y_data, z_data) # show data along with plotted surface

    axes.set_title('Surface Plot (click-drag with mouse)') # add a title for surface plot
    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label
    axes.set_zlabel('Z Data') # Z axis data label

    plt.show()
    plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems


def ContourPlot(func, data, fittedParameters):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)
    axes = f.add_subplot(111)

    x_data = data[0]
    y_data = data[1]
    z_data = data[2]

    xModel = numpy.linspace(min(x_data), max(x_data), 20)
    yModel = numpy.linspace(min(y_data), max(y_data), 20)
    X, Y = numpy.meshgrid(xModel, yModel)

    Z = func(numpy.array([X, Y]), *fittedParameters)

    axes.plot(x_data, y_data, 'o')

    axes.set_title('Contour Plot') # add a title for contour plot
    axes.set_xlabel('X Data') # X axis data label
    axes.set_ylabel('Y Data') # Y axis data label

    CS = matplotlib.pyplot.contour(X, Y, Z, numberOfContourLines, colors='k')
    matplotlib.pyplot.clabel(CS, inline=1, fontsize=10) # labels for contours

    plt.show()
    plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems


def ScatterPlot(data):
    f = plt.figure(figsize=(graphWidth/100.0, graphHeight/100.0), dpi=100)

    matplotlib.pyplot.grid(True)
    axes = Axes3D(f)
    x_data = data[0]
    y_data = data[1]
    z_data = data[2]

    axes.scatter(x_data, y_data, z_data)

    axes.set_title('Scatter Plot (click-drag with mouse)')
    axes.set_xlabel('X Data')
    axes.set_ylabel('Y Data')
    axes.set_zlabel('Z Data')

    plt.show()
    plt.close('all') # clean up after using pyplot or else thaere can be memory and process problems


def func(data, a, b, c):
    x = data[0]
    y = data[1]
    return a + (x**b) * (y**c)


if __name__ == "__main__":
    xData = numpy.array([1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0])
    yData = numpy.array([11.0, 12.1, 13.0, 14.1, 15.0, 16.1, 17.0, 18.1, 90.0])
    zData = numpy.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.0, 9.9])

    data = [xData, yData, zData]

    initialParameters = [1.0, 1.0, 1.0] # these are the same as scipy default values in this example

    # here a non-linear surface fit is made with scipy's curve_fit()
    fittedParameters, pcov = scipy.optimize.curve_fit(func, [xData, yData], zData, p0 = initialParameters)

    ScatterPlot(data)
    SurfacePlot(func, data, fittedParameters)
    ContourPlot(func, data, fittedParameters)

    print('fitted prameters', fittedParameters)

    modelPredictions = func(data, *fittedParameters) 

    absError = modelPredictions - zData

    SE = numpy.square(absError) # squared errors
    MSE = numpy.mean(SE) # mean squared errors
    RMSE = numpy.sqrt(MSE) # Root Mean Squared Error, RMSE
    Rsquared = 1.0 - (numpy.var(absError) / numpy.var(zData))
    print('RMSE:', RMSE)
    print('R-squared:', Rsquared)
James Phillips
  • 4,526
  • 3
  • 13
  • 11
  • so even though my x and y are different dimensions, if i follow this format and use meshgrid, it should still work? – mj1496 Mar 06 '19 at 20:26
  • The X, Y, and Z data must have the same number of values for curve fitting with curve_fit() as shown - if after meshgrid this is true, then it should be possible. – James Phillips Mar 06 '19 at 21:46
  • Hi, I tried to do everything the same as your example, except I changed the xData, yData, and zData to be `[0.5,0.33,0.25,0.2]` and `[1e-9,1e-8,1e-7,1e-6,1e-5,1e-4]` and `[9.9981e-10,9.9504e-10,9.7905e-10,9.492e-10],[9.9951e-9,9.9097e-9,9.6711e-9,9.2698e-9],[9.9873e-8,9.8349e-8,9.4816e-8,8.947e-8],[9.967e-7,9.6971e-7,9.1801e-7,8.478e-7],[9.9139e-6,9.4416e-6,8.6995e-6,7.7991e-6],[9.7742e-5,8.9677e-5,7.9378e-5,6.8296e-5]]` , respectively, and i just `numpy.meshgrid` the xData and yData to be the same size. But now I am getting an error. – mj1496 Mar 07 '19 at 00:55