I trained a Many-to-Many sequence model in Keras with return_sequences=True
and TimeDistributed
wrapper on the last Dense layer:
model = Sequential()
model.add(Embedding(input_dim=vocab_size, output_dim=50))
model.add(LSTM(100, return_sequences=True))
model.add(TimeDistributed(Dense(vocab_size, activation='softmax')))
# train...
model.save_weights("weights.h5")
So during the training the loss is calculated over all hidden states (in every timestamp). But for inference I only need the get output on the last timestamp. So I load the weights into Many-to-One sequence model for inference without TimeDistributed
wrapper and I set return_sequences=False
to get only last output of the LSTM layer:
inference_model = Sequential()
inference_model.add(Embedding(input_dim=vocab_size, output_dim=50))
inference_model.add(LSTM(100, return_sequences=False))
inference_model.add(Dense(vocab_size, activation='softmax'))
inference_model.load_weights("weights.h5")
When I test my inference model on a sequence with length 20 I expect to get a prediction with shape (vocab_size) but inference_model.predict(...)
still returns predictions for every timestamp - a tensor of shape (20, vocab_size)