The solution follows directly from the question. First, we'll design a suspending function for the task. Let's see our requirements:
if some of the jobs are taking longer that the timeout... without cancelling the jobs that are still running.
It means that the jobs we launch have to be standalone (not children), so we'll opt-out of structured concurrency and use GlobalScope
to launch them, manually collecting all the jobs. We use async
coroutine builder because we plan to collect their results of some type R
later:
val jobs: List<Deferred<R>> = List(numberOfJobs) {
GlobalScope.async { /* our code that produces R */ }
}
after launching the jobs I need to wait for them all to complete their task OR for a given timeout to expire, whichever comes first.
Let's wait for all of them and do this waiting with timeout:
withTimeoutOrNull(timeoutMillis) { jobs.joinAll() }
We use joinAll
(as opposed to awaitAll
) to avoid exception if one of the jobs fail and withTimeoutOrNull
to avoid exception on timeout.
my main function needs to wake as soon as the timeout expires, inspect which jobs did finish in time (if any) and which ones are still running
jobs.map { deferred -> /* ... inspect results */ }
In the main code (which is not a coroutine) ...
Since our main code is not a coroutine it has to wait in a blocking way, so we bridge the code we wrote using runBlocking
. Putting it all together:
fun awaitResultsWithTimeoutBlocking(
timeoutMillis: Long,
numberOfJobs: Int
) = runBlocking {
val jobs: List<Deferred<R>> = List(numberOfJobs) {
GlobalScope.async { /* our code that produces R */ }
}
withTimeoutOrNull(timeoutMillis) { jobs.joinAll() }
jobs.map { deferred -> /* ... inspect results */ }
}
P.S. I would not recommend deploying this kind of solution in any kind of a serious production environment, since letting your background jobs running (leak) after timeout will invariably badly bite you later on. Do so only if you throughly understand all the deficiencies and risks of such an approach.