I code a CNN model with Mnist in Keras. The code and print its summary like this: code for cnn:
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3),
activation='relu',
input_shape=input_shape))
model.add(Conv2D(63, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, name='dense', activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model summary:
x_train shape: (60000, 28, 28, 1)
60000 train samples
10000 test samples
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
conv2d_1 (Conv2D) (None, 26, 26, 32) 320
_________________________________________________________________
conv2d_2 (Conv2D) (None, 24, 24, 63) 18207
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 12, 12, 63) 0
_________________________________________________________________
dropout_1 (Dropout) (None, 12, 12, 63) 0
_________________________________________________________________
flatten_1 (Flatten) (None, 9072) 0
_________________________________________________________________
dense (Dense) (None, 128) 1161344
_________________________________________________________________
dropout_2 (Dropout) (None, 128) 0
_________________________________________________________________
dense_1 (Dense) (None, 10) 1290
=================================================================
Total params: 1,181,161
Trainable params: 1,181,161
Non-trainable params: 0
_________________________________________________________________
The kernel_size
of the first and the second conv2D layers are all (3,3)
.
I don't understand why there are 18207 parameters in the second conv2D layer. Shouldn't it be computed like (3*3+1)*63=630
?