I have been looking for a clear answer to this question all morning but couldn't find anything understandable. I just started to use pyspark (installed with pip) a bit ago and have a simple .py file reading data from local storage, doing some processing and writing results locally. I'm currently running it using : python my_file.py
What I'm trying to do : Use files from AWS S3 as the input , write results to a bucket on AWS3
I am able to create a bucket an load files using "boto3" but saw some options using "spark.read.csv", which I want to use.
What I have tried : I tried to set up the credentials with :
spark = SparkSession.builder \
.appName("my_app") \
.config('spark.sql.codegen.wholeStage', False) \
.getOrCreate()\
spark._jsc.hadoopConfiguration().set("fs.s3a.awsAccessKeyId", "my_key_id")
spark._jsc.hadoopConfiguration().set("fs.s3a.awsSecretAccessKey", "my_secret_key")
then :
df = spark.read.option("delimiter", ",").csv("s3a://bucket/key/filename.csv", header = True)
But get the error :
java.io.IOException: No FileSystem for scheme: s3a
Questions :
- Do I need to install something in particular to make pyspark S3 enable ?
- Should I somehow package my code and run a special command using the pyspark console ?
Thank you all, sorry for the duplicated issue
SOLVED :
The solution is the following :
To link a local spark instance to S3, you must add the jar files of aws-sdk and hadoop-sdk to your classpath and run your app with : spark-submit --jars my_jars.jar
Be carefull with the version you use for the SDKs, not all of them are compatible : aws-java-sdk-1.7.4, hadoop-aws-2.7.4 worked for me.
The configuration I used is :
spark = SparkSession.builder \
.appName("my_app") \
.config('spark.sql.codegen.wholeStage', False) \
.getOrCreate()
spark._jsc.hadoopConfiguration().set("fs.s3a.access.key", "mykey")
spark._jsc.hadoopConfiguration().set("fs.s3a.secret.key", "mysecret")
spark._jsc.hadoopConfiguration().set("fs.s3a.impl","org.apache.hadoop.fs.s3a.S3AFileSystem")
spark._jsc.hadoopConfiguration().set("com.amazonaws.services.s3.enableV4", "true")
spark._jsc.hadoopConfiguration().set("fs.s3a.aws.credentials.provider","org.apache.hadoop.fs.s3a.BasicAWSCredentialsProvider")
spark._jsc.hadoopConfiguration().set("fs.s3a.endpoint", "eu-west-3.amazonaws.com")