I am trying to fit known well-defined shapes (eg boxes, cylinders; with configurable positions, rotations and dimensions) to a set of points with normals generated from sampling a 3D mesh. My current method is to define a custom fit function for each shape and pass it to a third-party optimisation function:
fitness = get_fitness(shape_parameters, points)
best_parameters = external.optimise(get_fitness, initial_parameters, points)
(for reference, I'm currently using Python 3 and scipy.optimize.minimize
with bounds, but language is irrelevant).
This fitness function for a rectangle would look something like
def get_fitness(parameters, points):
side_fitnesses = []
for side in [top, right, bottom, left, back, front]:
dists = get_side_distances(parameters, points, side)
ndevs = get_side_normal_deviations(parameters, points, side)
side_fitnesses.append(combine_dists_and_ndevs(dists, ndevs))
fitnesses = choose_best_side_for_each_point(side_fitnesses)
return mean(fitnesses)
However this means I have to determine outliers (with/without caching), and I can only fit one shape at a time.
For example (in 2D), for these points (with normals), I'd like the following result:
Notice that there are multiple shapes returned, and outliers are ignored. In general, there can be many, one or zero shapes in the input data. Post-processing can remove invalid (eg too small) results.
Note: my real problem is in 3D. I have segments of a 3D mesh representation of real-world objects, which means I have more information than just points/normals (such as face areas and connectivity) which are in the example above.
Further reading:
- Not well-defined shape-fitting
- Highly technical n-dimensional fitting
- Primitive shape-fitting thesis
- Unanswered SO question on something similar
PS: I'm not sure if StackOverflow is the best StackExchange site for this question