before a come here to ask you I search a lot in the internet and documentations.
My problem is as follow:
I have a dataframe like that:
date dir vel
0 2006-02-12 17:00:00 181.00 3.92
1 2006-02-12 19:00:00 17.88 5.10
2 2006-02-12 21:00:00 214.75 3.73
3 2006-02-13 00:00:00 165.53 2.16
4 2006-02-13 01:00:00 189.44 2.94
5 2006-02-13 04:00:00 152.88 2.55
6 2006-02-13 05:00:00 188.03 3.73
7 2006-02-13 06:00:00 158.50 1.37
8 2006-02-13 07:00:00 189.44 2.55
9 2006-02-13 08:00:00 152.88 1.37
10 2006-02-13 10:00:00 109.28 0.20
11 2006-02-13 11:00:00 248.50 0.98
12 2006-02-13 12:00:00 26.31 1.96
13 2006-02-13 13:00:00 19.28 6.08
14 2006-02-13 14:00:00 334.28 3.53
15 2006-02-13 15:00:00 338.50 2.75
16 2006-02-13 16:00:00 318.81 3.92
17 2006-02-13 17:00:00 323.03 3.73
18 2006-02-13 21:00:00 62.88 1.76
19 2006-02-13 22:00:00 188.03 2.94
I just need to find the sequences of consecutive dates and drop the sequences of consecutive dates with less than 3 dates of duration. So I would get as result the following dataframe:
date dir vel
5 2006-02-13 04:00:00 152.88 2.55
6 2006-02-13 05:00:00 188.03 3.73
7 2006-02-13 06:00:00 158.50 1.37
8 2006-02-13 07:00:00 189.44 2.55
9 2006-02-13 08:00:00 152.88 1.37
10 2006-02-13 10:00:00 109.28 0.20
11 2006-02-13 11:00:00 248.50 0.98
12 2006-02-13 12:00:00 26.31 1.96
13 2006-02-13 13:00:00 19.28 6.08
14 2006-02-13 14:00:00 334.28 3.53
15 2006-02-13 15:00:00 338.50 2.75
16 2006-02-13 16:00:00 318.81 3.92
17 2006-02-13 17:00:00 323.03 3.73
So far I have used the following script (inspired in this anwer:Find group of consecutive dates in Pandas DataFrame)
(obs: The DataFrame name is estreito):
dt = estreito['date']
hour = pd.Timedelta('1H')
in_block = ((dt - dt.shift(-1)).abs() == hour) | (dt.diff() == hour)
filt = estreito.loc[in_block]
breaks = filt['date'].diff() != hour
groups = breaks.cumsum()
for _, frame in filt.groupby(groups):
print(frame, end='\n\n')
The print output is something like that:
date dir vel
3 2006-02-13 00:00:00 165.53 2.16
4 2006-02-13 01:00:00 189.44 2.94
date dir vel
5 2006-02-13 04:00:00 152.88 2.55
6 2006-02-13 05:00:00 188.03 3.73
7 2006-02-13 06:00:00 158.50 1.37
8 2006-02-13 07:00:00 189.44 2.55
9 2006-02-13 08:00:00 152.88 1.37
date dir vel
10 2006-02-13 10:00:00 109.28 0.20
11 2006-02-13 11:00:00 248.50 0.98
12 2006-02-13 12:00:00 26.31 1.96
13 2006-02-13 13:00:00 19.28 6.08
14 2006-02-13 14:00:00 334.28 3.53
15 2006-02-13 15:00:00 338.50 2.75
16 2006-02-13 16:00:00 318.81 3.92
17 2006-02-13 17:00:00 323.03 3.73
How can I save the output in a new Dataframe filtering the groups with less than 3 consecutive dates of lenght.
There is a different way to do this analysis? Perhaps have an easier way to get the desired result.
Thanks in advance.