I am trying to understand how JSON data which is not parsed/extracted correctly can be converted into a (Pandas) DataFrame.
I am using python (3.7.1) and have tried the usual way of reading the JSON data. Actually, the code works if I use transpose or axis=1 syntax. But using that completely ignores a large number of values or variables in the data and I am 100% sure that the maybe the code is working but is not giving the desired results.
import pandas as pd
import numpy as np
import csv
import json
sourcefile = open(r"C:\Users\jadil\Downloads\chicago-red-light-and-speed-camera-data\socrata_metadata_red-light-camera-violations.json")
json_data = json.load(sourcefile)
#print(json_data)
type(json_data)
dict
## this code works but is not loading/reading complete data
df = pd.DataFrame.from_dict(json_data, orient="index")
df.head(15)
#This is what I am getting for the first 15 rows
df.head(15)
0
createdAt 1407456580
description This dataset reflects the daily volume of viol...
rights [read]
flags [default, restorable, restorePossibleForType]
id spqx-js37
oid 24980316
owner {'type': 'interactive', 'profileImageUrlLarge'...
newBackend False
totalTimesRated 0
attributionLink http://www.cityofchicago.org
hideFromCatalog False
columns [{'description': 'Intersection of the location...
displayType table
indexUpdatedAt 1553164745
rowsUpdatedBy n9j5-zh