C has no mechanism for hiding individual members of a structure type. However, by operating only in terms of pointers to such a type, and not providing a definition, you can make the whole type opaque. Users would then have to use the functions you provide to manipulate instances in any way. This is a thing that is sometimes done.
To some extent, you may be able to achieve something like what you describe with a hidden context. For example, consider this:
header.h
typedef struct _person {
float wage;
int groupid;
} Person;
implementation.c
struct _person_real {
Person person; // must be first, and is a structure, not a pointer.
int id;
char name[NAME_MAX_LEN];
};
Now you can do this:
Person *create_person(char name[]) {
struct _person_real *pr = malloc(sizeof(*pr));
if (pr) {
pr->person.wage = DEFAULT_WAGE;
pr->person.groupid = DEFAULT_GROUPID;
pr->id = generate_id();
strncpy(pr->name, name, sizeof(pr->name));
pr->name[sizeof(pr->name) - 1] = '\0';
return &pr->person; // <-- NOTE WELL
} else {
return NULL;
}
}
A pointer to the first member of a structure always points also to the whole structure, too, so if the client passes a pointer obtained from that function back to you, you can
struct _person_real *pr = (struct _person_real *) Person_pointer;
and work on the members from the larger context.
Be well aware, however, that such a scheme is risky. Nothing prevents a user from creating a Person
without the larger context, and passing a pointer to it to a function that expects the context object to be present. There are other issues.
Overall, C APIs generally either take the opaque structure approach or just carefully document what clients are permitted to do with the data they have access to, or even just document how everything works, so that users can make their own choices. These, especially the latter, are well aligned with overall C approaches and idioms -- C does not hold your hand, or protect you from doing harm. It trusts you to know what you're doing, and to do only what you intend to do.