Let's say I have the following 3 dataframes:
import numpy as np
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
import pandas as pd
import io
import csv
import itertools
import xlsxwriter
df1 = pd.DataFrame(np.array([
[1010667747, 'Suzhou', 'Suzhou IFS'],
[1010667356, 'Shenzhen', 'Kingkey 100'],
[1010667289, 'Wuhan', 'Wuhan Center']]),
columns=['id', 'city', 'name']
)
df2 = pd.DataFrame(np.array([
[190010, 'Shenzhen', 'Ping An Finance Centre'],
[190012, 'Guangzhou', 'Guangzhou CTF Finance Centre'],
[190015, 'Beijing', 'China Zun']]),
columns=['id', 'city', 'name']
)
df3 = pd.DataFrame(np.array([
['ZY-13', 'Shanghai', 'Shanghai World Financial Center'],
['ZY-15', 'Hong Kong', 'International Commerce Centre'],
['ZY-16', 'Changsha', 'Changsha IFS Tower T1']]),
columns=['id', 'city', 'name']
)
I would like to find similar building names by calculating their similarity ratio using fuzzywuzzy
package, here is my solution which need to improve:
First, I concatenate all three dataframes to one column as full_name
. At this step, in fact, I shouldn't add id
to full_name
but in order to better distingue building names from different dataframes, I have added it:
df1['full_name'] = df1['id'].apply(str) + '_' + df1['city'] + '_' + df1['name']
df2['full_name'] = df2['id'].apply(str) + '_' + df2['city'] + '_' + df2['name']
df3['full_name'] = df3['id'].apply(str) + '_' + df3['city'] + '_' + df3['name']
df4 = df1['full_name']
df5 = df2['full_name']
df6 = df3['full_name']
frames = [df4, df5, df6]
df = pd.concat(frames)
df.columns = ["full_name"]
df.to_excel('concated_names.xlsx', index = False)
Second, I iterate all full_names
and compare with each others to get similarity_ratio
of each pairs of building names:
df = pd.read_excel('concated_names.xlsx')
projects = df.full_name.tolist()
processedProjects = []
matchers = []
threshold_ratio = 10
for project in projects:
if project:
processedProject = fuzz._process_and_sort(project, True, True)
processedProjects.append(processedProject)
matchers.append(fuzz.SequenceMatcher(None, processedProject))
with open('output10.csv', 'w', encoding = 'utf_8_sig') as f1:
writer = csv.writer(f1, delimiter=',', lineterminator='\n', )
writer.writerow(('name', 'matched_name', 'similarity_ratio'))
for project1, project2 in itertools.combinations(enumerate(processedProjects), 2):
matcher = matchers[project1[0]]
matcher.set_seq2(project2[1])
ratio = int(round(100 * matcher.ratio()))
if ratio >= threshold_ratio:
#print(projects[project1[0]], projects[project2[0]])
my_list = projects[project1[0]], projects[project2[0]], ratio
print(my_list)
writer.writerow(my_list)
my_list
result:
('1010667747_Suzhou_Suzhou IFS', '1010667356_Shenzhen_Kingkey 100', 44)
('1010667747_Suzhou_Suzhou IFS', '1010667289_Wuhan_Wuhan Center', 49)
('1010667747_Suzhou_Suzhou IFS', '190010_Shenzhen_Ping An Finance Centre', 33)
('1010667747_Suzhou_Suzhou IFS', '190012_Guangzhou_Guangzhou CTF Finance Centre', 47)
......
At last step, I split output10.csv
manually in Excel and get my final expected result like this (it will be better if I have dataframe source for each building):
id city name matched_id matched_name \
0 1010667747 Suzhou Suzhou IFS 1010667356 Shenzhen
1 1010667747 Suzhou Suzhou IFS 1010667289 Wuhan
2 1010667747 Suzhou Suzhou IFS 190010 Shenzhen
3 1010667747 Suzhou Suzhou IFS 190012 Guangzhou
4 1010667747 Suzhou Suzhou IFS 190015 Beijing
matched_name.1 similarity_ratio
0 Kingkey 100 44
1 Wuhan Center 49
2 Ping An Finance Centre 33
3 Guangzhou CTF Finance Centre 47
4 China Zun 27
How could I get final expected result in a way more efficient in Python? Thanks.