Let's say I have a combined dataframe named df
as follows. Each row has buildings' info and their matched buildings' info. I hope to merge id
of each building from df1, df2 and df3 (see below). The columns of df_num
or matched_df_num
is there to distingue which dataframe the building info come from, if it's equals to 1, means it's from df1
, 2 means from df2
, 3 means from df3
.
df_num city name matched_df_num \
0 1 Shenzhen Kingkey 100 2
1 2 Shenzhen Ping An Finance Centre 2
2 2 Shenzhen Ping An Finance Centre 3
3 2 Guangzhou Guangzhou CTF Finance Centre 3
4 3 Shanghai Shanghai World Financial Center 3
matched_city matched_name similarity_ratio
0 Shenzhen Ping An Finance Centre 51
1 Guangzhou Guangzhou CTF Finance Centre 66
2 Shanghai Shanghai World Financial Center 59
3 Shanghai Shanghai World Financial Center 56
4 Changsha Changsha IFS Tower T1 57
I want to merge the column of id
s from df1
, df2
and df3
below for building names and matched names:
df1 = pd.DataFrame(np.array([
[1010667747, 'Suzhou', 'Suzhou IFS'],
[1010667356, 'Shenzhen', 'Kingkey 100'],
[1010667289, 'Wuhan', 'Wuhan Center']]),
columns=['id', 'city', 'name']
)
df2 = pd.DataFrame(np.array([
[190010, 'Shenzhen', 'Ping An Finance Centre'],
[190012, 'Guangzhou', 'Guangzhou CTF Finance Centre'],
[190015, 'Beijing', 'China Zun']]),
columns=['id', 'city', 'name']
)
df3 = pd.DataFrame(np.array([
['ZY-13', 'Shanghai', 'Shanghai World Financial Center'],
['ZY-15', 'Hong Kong', 'International Commerce Centre'],
['ZY-16', 'Changsha', 'Changsha IFS Tower T1']]),
columns=['id', 'city', 'name']
)
This is my expected result:
df_num city name id \
0 1 Shenzhen Kingkey 100 1010667356
1 2 Shenzhen Ping An Finance Centre 190010
2 2 Shenzhen Ping An Finance Centre 190010
3 2 Guangzhou Guangzhou CTF Finance Centre 190012
4 3 Shanghai Shanghai World Financial Center ZY-13
matched_df_num matched_city matched_name \
0 2 Shenzhen Ping An Finance Centre
1 2 Guangzhou Guangzhou CTF Finance Centre
2 3 Shanghai Shanghai World Financial Center
3 3 Shanghai Shanghai World Financial Center
4 3 Changsha Changsha IFS Tower T1
similarity_ratio matched_id
0 51 190010
1 66 190010
2 59 ZY-13
3 56 ZY-13
4 57 ZY-16
How could I insert two new columns id
and matched_id
and their values in df
using Pandas? Thanks for helps at advance.
Update: my solution:
df = df.merge(df1, on = ['city', 'name'], how = 'left').merge(df2, on = ['city', 'name'], how = 'left').merge(df3, on = ['city', 'name'], how = 'left')
final_df = df.merge(df1, left_on = ['matched_city', 'matched_name'], right_on = ['city', 'name'], how = 'left').merge(df2, left_on = ['matched_city', 'matched_name'], right_on = ['city', 'name'], how = 'left').merge(df3, left_on = ['matched_city', 'matched_name'], right_on = ['city', 'name'], how = 'left')
df_num city_x name_x matched_df_num \
0 1 Shenzhen Kingkey 100 2
1 2 Shenzhen Ping An Finance Centre 2
2 2 Shenzhen Ping An Finance Centre 3
3 2 Guangzhou Guangzhou CTF Finance Centre 3
4 3 Shanghai Shanghai World Financial Center 3
matched_city matched_name similarity_ratio id_x \
0 Shenzhen Ping An Finance Centre 51 1010667356
1 Guangzhou Guangzhou CTF Finance Centre 66 NaN
2 Shanghai Shanghai World Financial Center 59 NaN
3 Shanghai Shanghai World Financial Center 56 NaN
4 Changsha Changsha IFS Tower T1 57 NaN
id_y id_x id_y city_y name_y id_x city_x \
0 NaN NaN NaN NaN NaN 190010 Shenzhen
1 190010 NaN NaN NaN NaN 190012 Guangzhou
2 190010 NaN NaN NaN NaN NaN NaN
3 190012 NaN NaN NaN NaN NaN NaN
4 NaN ZY-13 NaN NaN NaN NaN NaN
name_x id_y city_y \
0 Ping An Finance Centre NaN NaN
1 Guangzhou CTF Finance Centre NaN NaN
2 NaN ZY-13 Shanghai
3 NaN ZY-13 Shanghai
4 NaN ZY-16 Changsha
name_y
0 NaN
1 NaN
2 Shanghai World Financial Center
3 Shanghai World Financial Center
4 Changsha IFS Tower T1