EDIT: The problem was not within the geoMean function, but with a wrong use of aggregate(), as explained in the comments
I am trying to calculate the geometric mean of multiple measurements for several different species, which includes NAs. An example of my data looks like this:
species <- c("Ae", "Ae", "Ae", "Be", "Be")
phen <- c(2, NA, 3, 1, 2)
hveg <- c(NA, 15, 12, 60, 59)
df <- data.frame(species, phen, hveg)
When I try to calculate the geometric mean for the species Ae with the built-in function geoMean from the package EnvStats like this
library("EnvStats")
aggregate(df[, 3:3], list(df1$Sp), geoMean, na.rm=TRUE)
it works wonderful and skips the NAs to give me the geometric means per species.
Group.1 phen hveg
1 Ae 4.238536 50.555696
2 Be 1.414214 1.414214
When I do this with my large dataset, however, the function stumbles over NAs and returns NA as result even though there are e.g 10 numerical values and only one NA. This happens for example with the column SLA_mm2/mg. My large data set looks like this:
> str(cut2trait1)
Classes ‘tbl_df’, ‘tbl’ and 'data.frame': 22 obs. of 19 variables:
$ Cut : chr "15_08" "15_08" "15_08" "15_08" ...
$ Block : num 1 1 1 1 1 1 1 1 1 1 ...
$ ID : num 451 512 431 531 591 432 551 393 511 452 ...
$ Plot : chr "1_1" "1_1" "1_1" "1_1" ...
$ Grazing : chr "n" "n" "n" "n" ...
$ Acro : chr "Leuc.vulg" "Dact.glom" "Cirs.arve" "Trif.prat" ...
$ Sp : chr "Lv" "Dg" "Ca" "Tp" ...
$ Label_neu : chr "Lv021" "Dg022" "Ca021" "Tp021" ...
$ PlantFunctionalType: chr "forb" "grass" "forb" "forb" ...
$ PlotClimate : chr "AC" "AC" "AC" "AC" ...
$ Season : chr "Aug" "Aug" "Aug" "Aug" ...
$ Year : num 2015 2015 2015 2015 2015 ...
$ Tiller : num 6 3 3 5 6 8 5 2 1 7 ...
$ Hveg : num 25 38 70 36 68 65 23 58 71 27 ...
$ Hrep : num 39 54 77 38 76 70 65 88 98 38 ...
$ Phen : num 8 8 7 8 8 7 6.5 8 8 8 ...
$ SPAD : num 40.7 42.4 48.7 43 31.3 ...
$ TDW_in_g : num 4.62 4.85 11.86 5.82 8.99 ...
$ SLA_mm2/mg : num 19.6 19.8 20.3 21.2 21.7 ...
and the result of my code
gm_cut2trait1 <- aggregate(cut2trait1[, 13:19], list(cut2trait1$Sp), geoMean, na.rm=TRUE)
is (only the first two rows):
Group.1 Tiller Hveg Hrep Phen SPAD TDW_in_g SLA_mm2/mg
1 Ae 13.521721 73.43485 106.67933 NA 28.17698 1.2602475 NA
2 Be 8.944272 43.95452 72.31182 5.477226 20.08880 0.7266361 9.309672
Here, the geometric mean of SLA for Ae is NA, even though there are 9 numeric measurements and only one NA in the column used to calculate the geometric mean.
I tried to use the geometric mean function suggested here: Geometric Mean: is there a built-in? But instead of NAs, this returned the value 1.000 when used with my big dataset, which doesn't solve my problem.
So my question is: What is the difference between my example df and the big dataset that throws the geoMean function off the rails?