Unfortunately, no new containers were added in C++ 20 (at least none that I'd be aware of). I would agree, however, that such a container would be very useful. While just using std::vector<T>
with reserve()
and emplace_back()
will usually do OK, it does often generate inferior code compared to using a plain new T[]
as the use of emplace_back()
seems to inhibit vectorization. If we use an std::vector<T>
with an initial size instead, compilers seem to have trouble optimizing away the value initialization of elements, even if the entire vector is going to be overwritten right afterwards. Play with an example here.
You could use, for example, a wrapper like
template <typename T>
struct default_init_wrapper
{
T t;
public:
default_init_wrapper() {}
template <typename... Args>
default_init_wrapper(Args&&... args) : t(std::forward<Args>(args)...) {}
operator const T&() const { return t; }
operator T&() { return t; }
};
and
std::vector<no_init_wrapper<T>> buffer(N);
to avoid the useless initialization for trivial types. Doing so seems to lead to code similarly good as the plain std::unique_ptr
version. I wouldn't recommend this though, as it's quite ugly and cubmersome to use, since you then have to work with a vector of wrapped elements.
I guess the best option for now is to just roll your own container. This may serve as a starting point (beware of bugs):
template <typename T>
class dynamic_array
{
public:
using value_type = T;
using reference = T&;
using const_reference = T&;
using pointer = T*;
using const_pointer = const T*;
using iterator = T*;
using const_iterator = const T*;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
private:
std::unique_ptr<T[]> elements;
size_type num_elements = 0U;
friend void swap(dynamic_array& a, dynamic_array& b)
{
using std::swap;
swap(a.elements, b.elements);
swap(a.num_elements, b.num_elements);
}
static auto alloc(size_type size)
{
return std::unique_ptr<T[]> { new T[size] };
}
void checkRange(size_type i) const
{
if (!(i < num_elements))
throw std::out_of_range("dynamic_array index out of range");
}
public:
const_pointer data() const { return &elements[0]; }
pointer data() { return &elements[0]; }
const_iterator begin() const { return data(); }
iterator begin() { return data(); }
const_iterator end() const { return data() + num_elements; }
iterator end() { return data() + num_elements; }
const_reverse_iterator rbegin() const { return std::make_reverse_iterator(end()); }
reverse_iterator rbegin() { return std::make_reverse_iterator(end()); }
const_reverse_iterator rend() const { return std::make_reverse_iterator(begin()); }
reverse_iterator rend() { return std::make_reverse_iterator(begin()); }
const_reference operator [](size_type i) const { return elements[i]; }
reference operator [](size_type i) { return elements[i]; }
const_reference at(size_type i) const { return checkRange(i), elements[i]; }
reference at(size_type i) { return checkRange(i), elements[i]; }
size_type size() const { return num_elements; }
constexpr size_type max_size() const { return std::numeric_limits<size_type>::max(); }
bool empty() const { return std::size(*this) == 0U; }
dynamic_array() = default;
dynamic_array(size_type size)
: elements(alloc(size)), num_elements(size)
{
}
dynamic_array(std::initializer_list<T> elements)
: elements(alloc(std::size(elements))), num_elements(std::size(elements))
{
std::copy(std::begin(elements), std::end(elements), std::begin(*this));
}
dynamic_array(const dynamic_array& arr)
{
auto new_elements = alloc(std::size(arr));
std::copy(std::begin(arr), std::end(arr), &new_elements[0]);
elements = std::move(new_elements);
num_elements = std::size(arr);
}
dynamic_array(dynamic_array&&) = default;
dynamic_array& operator =(const dynamic_array& arr)
{
return *this = dynamic_array(arr);
}
dynamic_array& operator =(dynamic_array&&) = default;
void swap(dynamic_array& arr)
{
void swap(dynamic_array& a, dynamic_array& b);
swap(*this, arr);
}
friend bool operator ==(const dynamic_array& a, const dynamic_array& b)
{
return std::equal(std::begin(a), std::end(a), std::begin(b));
}
friend bool operator !=(const dynamic_array& a, const dynamic_array& b)
{
return !(a == b);
}
};