I'm programming a model in tf.keras, and running model.evaluate() on the training set usually yields ~96% accuracy. My evaluation on the test set is usually close, about 93%. However, when I predict manually, the model is usually inaccurate. This is my code:
import tensorflow as tf
from tensorflow.keras import layers
import numpy as np
import pandas as pd
!git clone https://github.com/DanorRon/data
%cd data
!ls
batch_size = 100
epochs = 15
alpha = 0.001
lambda_ = 0.001
h1 = 50
train = pd.read_csv('/content/data/mnist_train.csv.zip')
test = pd.read_csv('/content/data/mnist_test.csv.zip')
train = train.loc['1':'5000', :]
test = test.loc['1':'2000', :]
train = train.sample(frac=1).reset_index(drop=True)
test = test.sample(frac=1).reset_index(drop=True)
x_train = train.loc[:, '1x1':'28x28']
y_train = train.loc[:, 'label']
x_test = test.loc[:, '1x1':'28x28']
y_test = test.loc[:, 'label']
x_train = x_train.values
y_train = y_train.values
x_test = x_test.values
y_test = y_test.values
nb_classes = 10
targets = y_train.reshape(-1)
y_train_onehot = np.eye(nb_classes)[targets]
nb_classes = 10
targets = y_test.reshape(-1)
y_test_onehot = np.eye(nb_classes)[targets]
model = tf.keras.Sequential()
model.add(layers.Dense(784, input_shape=(784,), kernel_initializer='random_uniform', bias_initializer='zeros'))
model.add(layers.Dense(h1, activation='relu', kernel_regularizer=tf.keras.regularizers.l2(lambda_), kernel_initializer='random_uniform', bias_initializer='zeros'))
model.add(layers.Dense(10, activation='softmax', kernel_regularizer=tf.keras.regularizers.l2(lambda_), kernel_initializer='random_uniform', bias_initializer='zeros'))
model.compile(optimizer='SGD',
loss = 'mse',
metrics = ['categorical_accuracy'])
model.fit(x_train, y_train_onehot, epochs=epochs, batch_size=batch_size)
model.evaluate(x_test, y_test_onehot, batch_size=batch_size)
prediction = model.predict_classes(x_test)
print(prediction)
print(y_test[1:])
I've heard that a lot of the time when people have this problem, it's just a problem with data input. But I can't see any problem with that here since it almost always predicts wrongly (about as much as you would expect if it was random). How do I fix this problem?
Edit: Here are the specific results:
Last training step:
Epoch 15/15
49999/49999 [==============================] - 3s 70us/sample - loss: 0.0309 - categorical_accuracy: 0.9615
Evaluation output:
2000/2000 [==============================] - 0s 54us/sample - loss: 0.0352 - categorical_accuracy: 0.9310
[0.03524150168523192, 0.931]
Output from model.predict_classes:
[9 9 0 ... 5 0 5]
Output from print(y_test):
[9 0 0 7 6 8 5 1 3 2 4 1 4 5 8 4 9 2 4]